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Abstract 
Camera calibration is a crucial step in stereo vision 3D reconstruction, and the quality of 
the calibration directly affects the outcome of the 3D reconstruction. Traditional camera 
calibration techniques suffer from inaccuracies in corner detection, which impacts the 
results of camera calibration. Therefore, this paper designs a stereo camera calibration 
method based on deep learning corner detection. UNet is used as the benchmark 
network for corner detection, and innovations are made on top of this model. To address 
the issue of corner detection being easily interfered with by the chessboard pattern 
background, an image reconstruction enhancement module is introduced to reduce 
background features and highlight the chessboard corner features in the recognition 
image. To tackle the problems of false positives and missed detections in corner 
detection, a multi-level attention module is introduced to enhance the model’s ability to 
distinguish between different feature points, thereby reducing errors and missed 
detections of chessboard corners. A multi-scale spatial attention module is introduced 
to increase the model’s sensitivity to chessboard corner features. Real images are input 
into the trained model to generate a heatmap containing the corner positions. A 
Gaussian surface fitting algorithm is used to extract sub-pixel level corner positions from 
the heatmap. Finally, the Zhang Zhengyou calibration method is used for stereo camera 
calibration. Experimental results show that the improved modules proposed in this 
paper enhance the accuracy of corner detection, and the stereo camera calibration based 
on deep learning corner detection demonstrates certain advantages. 
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1. Introduction 

Camera calibration is a key step in stereo vision 3D reconstruction [1], whose purpose is to 
obtain the intrinsic and extrinsic parameters of the camera and the distortion coefficients. The 
quality of the calibration directly affects the outcome of the 3D reconstruction [2]. Existing 
calibration methods mainly fall into two categories: traditional calibration methods and self-
calibration methods [3]. Both essentially estimate the camera’s specific parameters through the 
relationship between real-world feature points and pixel coordinates. Self-calibration methods 
[4] do not require a specific scene and are highly practical, but due to the numerous interference 
factors in real-world scenes, their calibration accuracy and stability are not as good as 
traditional calibration methods. 
Traditional calibration methods use specific calibration objects to obtain the camera’s 
parameters, with these objects typically having distinct features such as corners, lines, or circles 
that can be accurately identified and located in the images captured by the camera. During 
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calibration, the correspondence between the measured positions of the feature points of the 
calibration object in the image and their actual positions in the physical world is established. 
This correspondence can be represented by establishing a spatial coordinate system, in which 
each feature point of the calibration object has its corresponding three-dimensional spatial 
coordinates. The Direct Linear Transformation (DLT) method proposed by Abdel-Aziz [5] and 
Karara is a camera calibration method based on the principles of photogrammetric geometry. 
This method’s main characteristic is to solve for the fundamental matrix by constructing 
homogeneous coordinates of two-dimensional points and three-dimensional points, with the 
fundamental matrix describing the projection relationship between two planes. According to 
the camera’s internal parameters, the essential matrix E is derived to obtain the camera’s 
position relationship in the world coordinate system, followed by decomposing the camera’s 
external parameters to obtain the rotation matrix and translation vector. The DLT method is 
simple to calculate and does not require iteration, but it does not consider the nonlinear 
distortion effects of the camera lens. In practical applications, the nonlinear distortion of the 
camera lens is inevitable, so more complex methods or iterative processes are usually needed 
to correct these distortions and improve calibration accuracy. Tsai [6] proposed a two-step 
method with radial constraint in 1986, which extracts corners from calibration images. Using 
the image coordinates of these corners and the actual coordinates of the calibration board, the 
camera’s parameters can be obtained. 
Around 2000, the Zhang Zhengyou calibration method [7] was proposed, which establishes 
equations using the properties of the homography matrix and rotation matrix by capturing 
multiple chessboard images from different angles, and solves these equations to obtain the 
camera’s accurate parameters. Compared to other traditional methods, it is easier to operate 
and has higher accuracy than self-calibration methods. However, traditional calibration 
methods still have many shortcomings, such as inaccurate corner detection and susceptibility 
to noise. In recent years, with the development of deep learning and artificial intelligence, 
camera calibration technology has also made significant progress [8]. 
In 2003, Lv Zhaohui and others proposed three neural network structures for stereo vision 
camera calibration: direct mapping, lens distortion correction, and spatial position 
compensation. However, these methods are all based on shallow neural networks and cannot 
meet the calibration requirements in complex environments with significant distortion. Using 
deep learning technology, camera parameters can be automatically learned from images [9], 
[10], [11], thereby improving calibration accuracy. Although these methods are more robust, 
there are still limitations in terms of pixel-level accuracy. Recently, Chen et al. [12] proposed a 
chessboard corner detection method that refines the peaks of the neural network response map 
to obtain sub-pixel level corner positions. This method has achieved good results, but its 
detection network is trained with corner coordinates, and the distribution of the generated 
response map is unknown, which is not very consistent with the corner refinement method. 
In this paper, a camera calibration method combining a deep learning corner detection method 
with the Zhang Zhengyou calibration method is used [14], and improvements are made to this 
structure. Experimental results show the effectiveness of the proposed method in real-world 
scenes. 

2. Camera Calibration Principles 

In the binocular stereo vision system shown in Fig. 1, a point M with coordinates (X, Y, Z) in the 
world coordinate system will be projected onto the images of the left and right cameras as 
points m1(uL, vL) and m2(uR, vR), respectively. The baseline b is the line connecting the optical 
centers of the left and right cameras, and their focal lengths are f. The optical centers of the 
cameras are OR and OL [13]. The homogeneous coordinates of the pixel coordinate point m(u, 
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v) are represented as m෥ (u,v,1), and the 3D homogeneous coordinates of the world coordinate 
point M are M෩ (X,Y,Z,1). According to the pinhole imaging principle, the relationship between 
the 3D point M෩  and its projection point m෥  is given by: 
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The matrix A is the camera’s intrinsic parameter matrix. [R, t] represents the camera’s extrinsic 
parameter matrix, where R is a 3x3 rotation matrix and t is a 3x1 translation vector; 0 and 1 are 
matrix padding constants. s is the scale factor. In the Zhang Zhengyou camera calibration 
method, it is assumed during the calibration process that the depth Z = 0, and the intrinsic and 
extrinsic parameters remain constant. Based on Equation 1, the following can be obtained: 
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The homography matrix H that relates the point \widetilde{M} to its projection on the image m 
satisfies the relationship M෩ = 𝑠𝐻m෥ , where H = A[r1 r2 t] = [h1 h2 h3]. This homography matrix 
contains information about both the intrinsic and extrinsic parameters, and it consists of a total 
of 8 degrees of freedom. According to the orthogonality of the rotation matrix {r1}^Tr2=0, and 
the magnitude satisfies ∣𝑟1∣=∣𝑟2∣=1∣r1∣=∣r2∣=1, the intrinsic and extrinsic 
parameters of the camera are solved. 
 

 
Fig.1 Binocular stereo vision 

3. Corner Detection Algorithm based on Deep Learning 

Traditional corner detection algorithms are inaccurate, prone to false positives and missed 
detections, and do not achieve sub-pixel level precision. For high-precision camera calibration, 
finer sub-pixel level positioning is required. To address these issues, this paper introduces a 
corner detection method based on deep learning [14], as shown in Fig. 2. 
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Fig. 2 Corner detection based on UNet 

 
The specific implementation steps are as follows: Use the generated heatmap to train the 
network model, and its loss function can be defined as: 
 

                Ldetect = ඵ |
ோమ

|Y1(x, y − Y(x, y)| |ଶdxdy                                            (3) 

 
Where Y represents the input heatmap containing the true sub-pixel corner positions, and Y1 
denotes the network’s output. When a real image is input into the trained model, a heatmap 
containing the corner positions is generated. A Gaussian surface fitting algorithm is used to 
extract sub-pixel level corner positions from this heatmap. The formula is as follows. 
 

||G(u, 𝜎) − G1|                                                                    (4)                                                                          ୳,ఙ
                                               ୟ୰୥ ୫୧୬  

 
G1 represents the distribution of each corner point in the heatmap, where µ is the center and σ 
is the variance. 

3.1. Improved UNet Corner Detection Network 
The UNet network, with its encoder and decoder structure, is capable of detecting corners on 
feature maps of different levels. In the contracting path, it captures global context information 
through pooling operations, and in the expansive path, it recovers detailed information through 
upsampling and skip connections. This allows the network to understand the position and 
relationships of corners within images, and the model structure is simple. Based on these 
advantages, this paper uses the UNet network as the benchmark model for corner detection 
and innovates on this baseline.Innovations include introducing a spatial multi-scale attention 
module in the skip connections of UNet. The feature maps of each level are input into the spatial 
multi-scale attention module, and the results are concatenated with the same level in the 
upsampling path after passing through the spatial attention multi-scale module. A multi-level 
attention module is introduced between upsampling and downsampling to reduce false 
positives and missed detections of chessboard corners. An image reconstruction enhancement 
module is introduced at the output stage of UNet to reconstruct and enhance the output images. 
The model structure is shown in the fig. below. 
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Fig.3 Model overall architecture 

3.2. SRU (Spatial Reconstruction Unit) Module 
The Image Reconstruction Enhancement Module, as shown in Fig, 3, is designed to reduce 
redundant features in images, decrease unnecessary computations, enhance the expression of 
useful features in image sequences, highlight corner features in recognition images, and 
improve the accuracy of corner detection [15]. The Image Reconstruction Enhancement Module 
consists of two units: the Spatial Reconstruction Unit and the Multi-scale Feature Fusion Unit.In 
the Spatial Reconstruction Unit, sequences are reordered based on their average attention 
weights, with the importance decreasing from F1 to F2, and F1 containing more corner 
information. However, simply discarding local sequences like F2, which contain less corner 
feature information, would affect the detection results. These sequences include background 
information and some auxiliary features that are beneficial for detection. To focus the model 
more on those regions of higher importance, local sequences of lower importance are fused 
with preceding local sequences of higher importance to generate new local sequences.The 
specific implementation involves performing a split operation in the Spatial Reconstruction 
Unit. The purpose of the split operation is to separate information containing corner feature 
spatial content from other information that does not contain corner features. The trainable 
parameter γ ∈ RC in the Group Normalization (GN) layer is used to measure the spatial pixel 
variance for each batch and channel. The input feature X is standardized by subtracting the 
mean μ and dividing by the standard deviation σ. This is represented as: 
 

                                           𝑋out=GN(𝑋)=γ
X-μ

√𝜎ଶ+ε
+β                                                                 (5) 

 

Where μ represents the mean, σ denotes the standard deviation, and ε is a constant added for 
numerical stability during division. The parameters γ and β are trainable affine transformation 
variables.These parameters enable dynamic adjustment of the activation values across 
different channel groups, assisting the model in focusing on the features at the locations of the 
chessboard corners while mitigating the impact of regions that do not contain corner features 
on the recognition outcomes.The normalized weight Wγ ∈ RC is derived from Equation (6), 
which elucidates the significance of various features. 
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The weight values of the feature map reweighted by Wγ are mapped to the range (0, 1) using 
the sigmoid function, as shown in the following formula: 
 

                                            W=Gate(Sigmoid(𝑊௥(GN(𝑋))))                                                         (7) 
 
Based on threshold gating, these weights are divided into weights W1 that contain more corner 
feature information and weights W2 that contain less corner feature information. W1 and W2 
are used to weight the input features separately, generating two parts of features with strong 
and weak corner feature expressiveness, respectively. Through cross-reconstruction 
operations, these two parts of features are effectively combined, reinforcing the information 
flow between them, in order to generate a more rich and space-saving feature representation. 
 

                                                 𝑋 ଵ
ௐ=Wଵ ⊗ X           Xଶ

ௐ=Wଶ ⊗ X                                                           
                                                 𝑋=Xଶ

ௐ ⊕ 𝑋ଵ
ௐ           X୑

ௐ=Xெ
ௐ ⊕ 𝑋ଵ

ௐ                                               (8) 
 
Where ⊗ denotes element-wise multiplication and ⊕  represents element-wise addition. 
Compared to the original sequence, the reconstructed sequence distinguishes between the 
corner feature areas and other regions based on the proposed average attention weights, and 
enhances the proportion of corner features in the global features through fusion operations, 
thereby highlighting the corner features. At the same time, it reduces the impact of interference 
factors such as noise and background on the entire image area sequence. 
The feature map X after spatial group reconstruction still contains some unimportant features 
such as background regions. Therefore, a multi-scale feature fusion unit is designed to further 
enhance the chessboard corner features. In the multi-scale feature fusion unit, the input feature 
map is processed by adaptive dilated convolution layers with dilation factors of 1, 2, and 3, 
respectively. For the recognition of fine structures like chessboard corners, it is necessary to 
maintain high resolution; ordinary convolution and pooling would reduce spatial resolution, 
and the limited receptive field makes it difficult to accurately capture these details. Adaptive 
dilated convolution, by expanding the receptive field, can better cover and recognize these 
small targets while retaining more spatial details, thus improving detection accuracy. The 
formula for obtaining a new feature map by adding and averaging the three sets of feature maps 
obtained from dilated convolutions is as follows: 
 

                                                    f = (φଵ3 × 3(f) + φଶ3 × 3(f) + φଷ3 × 3(f))                                   (9) 
 
The obtained feature map is then input into the designed pooling module [16], as shown in Fig, 
5. The pooling module consists of three branches. Horizontal and vertical strip pooling 
operations are utilized to collect remote context information from different spatial dimensions. 
Strip pooling divides the feature map into several vertical strip-like regions, and each region 
undergoes independent pooling operations. The purpose of this structure is to capture features 
along specific directions; corners exhibit directional features along the chessboard pattern. 
Strip pooling assists the network in focusing on these directional features, thereby enhancing 
the identification of corners. 
 



Scientific Journal of Intelligent Systems Research                                                                                        Volume 6 Issue 6, 2024 

ISSN: 2664-9640                

33 

 
Fig.4 The Working Mechanisms of Strip Pooling and Traditional Pooling in Chessboard Corner 

Detection 
 

Feature vector X ∈ RH×W×C, where H, W, and C represent the height, width, and number of 
channels of the feature vector, respectively. In strip pooling, the spatial range that needs to be 
pooled is (H, 1) and (1, W). Unlike two-dimensional average pooling, the proposed strip pooling 
computes the average over all feature values within rows or columns. 
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The third branch is the channel average pooling. Unlike conventional pooling, channel average 
pooling does not change the spatial dimensions of the feature map, retaining more spatial 
information, and it captures the interrelations between channels, allowing the model to more 
accurately locate corners. It computes the average of pixel values within each channel, 
integrating the spatial information across that channel, and generates a single value for each 
channel. This value represents the global information on that channel. Subsequently, a 1×1 
convolution with a kernel size of 3 is applied to each of the three output feature maps to expand 
their dimensions. After expansion, the three feature maps have the same dimensions, and the 
feature map of size H×W is obtained by summing the corresponding positions of the expanded 
feature maps. The output is then produced by multiplying the result of the 1×1 convolution and 
sigmoid activation with the corresponding pixels of the original input map. Finally, the outputs 
of the Spatial Reconstruction Unit and the Multi-scale Feature Fusion Unit are element-wise 
multiplied to obtain the result of the image reconstruction enhancement. 
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Fig.5 Image reconstruction enhancement module 

3.3. MFA (Multilevel Feature Attention) Module 
Different levels of features contain different information. By aggregating these features, the 
model can enhance its representation of corners, helping the network distinguish corners from 
other types of image features. This paper employs a multi-level attention mechanism that fuses 
channel and spatial information. The implementation of the MFA (Multilevel Feature Attention) 
module will be described in detail below. For the input feature map f, three 1×1 convolutions 
ψq1, ψv1, and ψk1 are used to transform the original feature map into a more compact and 
informative embedding representation: ψ1q (fh), ψ1v (fl), and ψ1k (fl). The embedding 
representations of the two level feature maps ψq1(fh) and ψk1(fl) are then computed to form 
a similarity matrix, which is then normalized through a softmax function to obtain a channel-
wise similarity matrix Mc. 
 

                                              Mc =  Fsoftmax(ψq1(fh)  ×  ψk1(fl))                                          (11) 

 

After calculating the channel-wise similarity, the feature map ψv1(fl) is multiplied by the matrix 
Mc through matrix multiplication to recover the complete channel dimension information. 
Then, a 1×1 convolutional layer ωc is used to adjust the size of the feature map to match the 
dimensions of feature map fh, completing the multi-level feature aggregation across channels. 
This results in a new feature map fch after feature aggregation, expressed as: 
 

                                                  fch =  ωc(ψv1(fl)  ×  Mc)  +  fh                                                 (12) 
 

The MFA module further enhances feature expression by performing spatial feature 
aggregation operations. Similar to the method previously used for channel feature aggregation, 
the attention weights are fused with spatial-dimensional information. This fusion is achieved 
through two 1×1 convolutional layers ωs and ψv2, along with the pre-computed spatial 
similarity matrix Ms, to spatially integrate the feature maps fl and the previously aggregated 
fch. Ultimately, this process generates the complete output feature representation fsh of the 
MFA module, with its mathematical expression being: 
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                                              fch =  ωs(ψv2(fl)  ×  Mc)  +  fh                                                    (13) 

 
This attention mechanism consists of two levels: low-level and high-level. In the low-level 
attention part, the model uses self-attention mechanisms to encode the input sequence, 
obtaining the representation vectors for each position and the local relationships within the 
input sequence. In the high-level attention part, the model receives the encoded representation 
vectors from the low level as input and evaluates and calculates the importance weights for 
each position through the attention mechanism. Based on these weights, the low-level 
representations are weighted and fused. This multi-level attention-guided feature aggregation 
provides an effective way for the model to explore and utilize the channel and spatial feature 
representations at different levels, allowing the model to more accurately identify and locate 
chessboard corners, enhance its ability to differentiate various types of feature points, and thus 
effectively reduce false positives and false negatives in corner detection. 
 

 
Fig. 6 Multilevel attention module 

3.4. Spatial Attention Module 
In the task of detecting chessboard corners, it is necessary to accurately identify the features of 
the corners. The spatial attention mechanism focuses on spatial information in the image, 
helping the model to identify the regions of interest in the image and adjust the model’s 
attention accordingly. In this way, the spatial attention mechanism can increase the model’s 
focus on the key areas in the image. This paper compares the CBAM (Convolutional Block 
Attention Module) spatial attention mechanism with a new EMA (Efficient Multi-Scale Attention) 
spatial attention mechanism, and analyzes the results in ablation experiments, ultimately 
selecting EMA spatial attention as the method in this paper. 
The CBAM attention mechanism is divided into two parts: the channel attention module and 
the spatial attention module. The channel attention module performs max pooling and average 
pooling on the input feature map along the height and width dimensions, respectively, to obtain 
two two-dimensional feature maps (H×W×1). The two feature maps after pooling are processed 
by a convolutional layer with shared weights, and the output of the convolutional layer is 
passed through a Sigmoid activation function to generate two weight matrices, corresponding 
to the results of max pooling and average pooling, respectively. Finally, the two weight matrices 
are added together to obtain a channel attention weight matrix. In the spatial attention module, 
the output of the channel attention module is used as input, and similar to the channel attention 
module, the input feature map is processed along the channel dimension with max pooling and 
average pooling, resulting in two two-dimensional feature maps (H×W×1). The results of max 
pooling and average pooling are concatenated along the channel dimension to obtain a feature 
map with a dimension of H×W×2. The concatenated feature map is then processed by a 
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convolutional layer, and the output of the convolutional layer is passed through a Sigmoid 
activation function to generate a spatial attention weight matrix, representing the importance 
of each spatial position. Finally, the spatial attention weight matrix is multiplied by the output 
feature map of the channel attention module to obtain the final weighted feature map. The 
CBAM spatial attention module is illustrated as follows. 
 

 
Fig. 7 CBAM attention module 

 
Traditional spatial attention establishes relationships between channels through 
dimensionality reduction. However, during the process of establishing channel relationships 
through dimensionality reduction, some critical information between channels may be lost, 
weakening the model’s deep understanding and expression capabilities for chessboard features. 
To address this issue, this paper introduces the EMA (Efficient Multi-Scale Attention) module, 
which can effectively preserve and utilize rich information between channels while reducing 
computational complexity. Below, the specific implementation steps of the EMA spatial 
attention module will be described in detail. 
In the EMA module, for the input feature map X ∈ Rେ×ୌ×୛, it is divided into g groups of sub-
features along the channel dimension to obtain X ∈ Rେ/ୋ×ୌ×୛ . Then, through three parallel 
branches, for the first two branches, horizontal average pooling along the spatial dimension is 
performed to obtain Xୟ୴୥

ଡ଼ ∈ Rେ×ୌ×୛, and vertical average pooling is performed to obtain Xୟ୴୥
ଢ଼ ∈

Rେ×ୌ×୛. This operation can capture long-distance dependencies in the horizontal direction and 
preserve the vertical positional relationships, helping the model to more accurately locate 
corner features. The outputs of the first two branches are then concatenated along the spatial 
dimension to obtain Xୟ୴୥

ଡ଼ଢ଼ ∈ Rେ×ୌ×୛. 

 
                                             Xୟ୴୥

ଡ଼ଢ଼ = 𝐶𝑜𝑛𝑐𝑎𝑡൫Xୟ୴୥
ଡ଼ , Xୟ୴୥

ଢ଼ ൯                                                         (14) 

 
The obtained feature is then input into a 1×1 convolutional layer to obtain the intermediate 
feature map F=Conv(Xୟ୴୥

ଡ଼ଢ଼ ). The F is split along the spatial direction into two components, and 
then reshape operations are performed on the two components. Sigmoid gating units are used 
to obtain weights Wx and Wy for the two components, respectively. Finally, the X is adjusted 
using Wx and Wy. 
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                                                 Xc = X⊙Wx⊙Wy                                                                      (15)    
                                                       
In the cross-spatial information aggregation part, we introduce two feature tensors: one is the 
output of the 1×1 convolution branch, and the other is the output of the 3×3 convolution branch. 
A 2D global average pooling layer is used to encode global spatial information from the output 
of the 1×1 branch to obtain the channel descriptor X1. X1 is then multiplied with the output of 
the 3×3 branch Xs to weight and sum all channel features at each position, resulting in the global 
spatial attention representation at the 1×1 scale. Similar operations are performed using a 2D 
average pooling layer on the output of the 3×3 branch to encode global spatial information and 
obtain Xs. A Softmax activation is applied to obtain the normalized channel descriptor X2, which 
is reshaped to have the same shape as X2. The channel descriptor X2 is then multiplied with the 
output of the 1×1 branch Xc, weighting and summing all channel features at each position to 
obtain the global spatial attention representation at the 3×3 scale. The two global spatial 
attentions preserve spatial position information at different scales. Finally, the two spatial 
attentions are aggregated, and a Sigmoid gating function is applied to obtain the weight W. The 
input feature X is then recalibrated using the weight W to obtain the output. 
 

                                  out = X⊙W                                                                         (16) 
 
Finally, through a reshape operation, the output is restored to the same shape as the input, 
yielding the final output of the EMA module. 
The EMA module ensures the even distribution of spatial semantic features among the 
subgroups by recombining a portion of the channels into the batch dimension and segmenting 
the channel dimension into multiple sub-feature groups. This parallel processing approach 
captures structural information at different spatial scales. By combining both 1x1 and 3x3 
convolution branches, the 1x1 branch provides rapid response with lower computational 
overhead, while the 3x3 branch captures local context information. Unlike the traditional CBAM 
spatial attention that simply uses an average method to aggregate attention weights, the EMA 
module uses matrix dot product operations to capture pixel-level pairwise relationships, 
emphasizing the impact of global context on each pixel. This design not only enhances the 
recognition ability of corner features but also optimizes the process of attention allocation at 
the pixel level, thereby improving the model’s understanding of the input data. 
 

 
Fig. 8 Multi-scale spatial attention module 
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4. Experimental Results and Analysis 

The network model in this paper is implemented using the PyTorch deep learning framework. 
The hardware configuration includes a V100-32GB GPU with 32 GB of memory. The software 
configuration is based on the cuda11.3 compute architecture version. Additionally, an 
Anaconda virtual environment is set up, with important dependencies including python3.8, 
pytorch1.10.0, and Numpy1.24.3. Ablation experiments are conducted to demonstrate the 
impact of the innovations in each module on corner detection performance. Comparisons with 
the original model algorithm and other model algorithms are made to prove the effectiveness 
of the algorithm proposed in this paper. 

4.1. Experimental Details 
Randomly generate a large number of virtual chessboards with a resolution of 480×480, and 
use the TUM RGBD dataset to generate fake backgrounds for the chessboards to enhance the 
data. Each generated chessboard corner has a Gaussian distribution representation, with the 
center of the Gaussian distribution corresponding to the annotated sub-pixel position. Training 
data consists of the generated virtual chessboard images and heatmaps containing the true sub-
pixel positions of the chessboard corners. The network model is trained on this data. Training 
is performed for 1000 epochs on the randomly generated dataset, with an initial learning rate 
of 0.001, which is halved after the 600th epoch. 
 

 
Fig. 9 A virtual checkerboard image is generated 

4.2. Corner Detection Ablation Experiments 
Table 1. The results of corner detection ablation experiment 

Category scale 
SRU  √   √ 
MFA   √  √ 
EMA    √ √ 

Corner error =0.0‒0.2 pixel 0.0416 0.0638 0.0527 0.0555 0.0972 
Corner error =0.2‒0.4 pixel 0.1944 0.3194 0.2444 0.2583 0.3444 
Corner error 0.4‒0.6 pixel 0.3361 0.3500 0.3416 0.3416 0.3361 

Corner error =0.6‒0.8 pixel 0.3250 0.2527 0.3027 0.2915 0.1667 
Corner error =0.8‒0.9 pixel 0.0722 0.0138 0.0444 0.0472 0.0556 

Corner error >0.9 pixel 0.0305 0.0000 0.0138 0.0055 0.0000 
Ed 0.55 0.46 0.51 0.48 0.43 

 
In this paper, the accuracy of the corner detection method is tested on the generated virtual 
chessboard data. Fifteen generated virtual chessboards are selected for corner detection in the 
test images, each chessboard has a size of 6×4 and contains 24 corners, a total of 360 corners. 
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All corners in these 15 images can be detected, The corner position is denoted as (x’, y’), and 
the true corner position is also denoted as (x, y). For each pair of corners, the detection error =

ඥ( y −  y′) 2 +  ( x −  x′)2. for each pair of corners is calculated and accumulated to the total 
error. After processing all corners, the total error is divided by the number of corners to obtain 
the average pixel error. The Corner error in different detection error intervals is the ratio of the 
total number of corners in that interval to the total number of corners detected by the model. 
The ablation experiment results are shown in Table 1. 
 

 
Fig. 10 Corner error probability distributions for different UNet variants 

 

 
Fig. 11 average pixel error of different methods 

 
Using UNet [19] as the baseline network, ablation experiments are conducted on randomly 
generated virtual chessboards to prove the effectiveness of each module. There are a total of 
360 corners in 15 virtual chessboards. Using UNet for corner detection results in an average 
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pixel error of 0.55. After introducing the Image Reconstruction Enhancement module, the 
average detection error is reduced to 0.46, which is lower than the baseline network UNet; the 
proportion of corners with error intervals between 0-0.2 pixels is greater than that detected by 
UNet, proving the effectiveness of the Image Reconstruction Enhancement module.Introducing 
the MFA module reduces the average detection error to 0.51, and the proportion of corners 
with error intervals between 0-0.2 pixels is greater than that detected by UNet, proving the 
effectiveness of the MFA module. Similarly, introducing the EMA module reduces the average 
detection error to 0.48, and the proportion of corners with error intervals between 0-0.2 pixels 
is greater than that detected by UNet, further proving the effectiveness of the EMA 
module.When integrating these modules into the model, the average detection error is reduced 
to 0.43, which is lower than the baseline network UNet; the proportion of corners with error 
intervals between 0-0.2 pixels is higher than that after introducing each module, indicating that 
the proposed model performs better with the combined effect of these modules, thereby 
proving the effectiveness of the modules proposed in this paper for corner detection. 
To illustrate the role of each module in reducing false positives and false negatives in 
chessboard corner detection, partial corner detection images are provided on the generated 
virtual dataset in Fig. 12. 
 

 
Fig. 12 Virtual Chessboard Image Corner Detection 

 
We selected two sets of images from the virtual chessboard test set for analysis. In the first set 
of images, when using the UNet baseline model, the corners at the left and right edges of the 
last row of the chessboard cannot be detected. After introducing the Image Reconstruction 
Enhancement module and the cross-spatial multi-scale attention, the model’s focus on corner 
features has improved, and all corners can be detected, but there are still issues with false 
positives. After introducing the multi-level attention module, the detection rate of corners is 
increased compared to the baseline model UNet, but some corners are still not detected. 
In the second set of images, the model fails to distinguish points with similar features to the 
chessboard corners in the background. After introducing the Image Reconstruction 
Enhancement module and the cross-spatial multi-scale attention, false positive corners still 
exist. However, after introducing the multi-level attention module, the model can better 
differentiate the features of chessboard corners from other points, eliminating the model’s false 
positive issues. With the combined effect of all modules, the model’s problems with false 
positives and false negatives are largely resolved. 
Since camera calibration requires corner detection on real chessboard images, this paper 
focuses on the effect of corner detection on real chessboard images and provides partial 
experimental effect images on the real dataset for analysis to demonstrate the effectiveness of 
each module, as shown in Fig. 13. 
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Fig. 13 Real Chessboard Corner Detection 

 
From the figure, it can be observed that when using the UNet network for corner detection, 
individual corners at the left or right edges may not be detected, and there is a possibility of 
false detection. After introducing the cross-spatial multi-scale module and the image 
reconstruction enhancement module, points at the left and right edges can be accurately 
detected, but there are still issues with false detection. This indicates that the module can 
enhance the model’s sensitivity to corner features and improve the accuracy of corner detection. 
From the small light spots circled in the figure, it can be seen that the model may have false 
detection issues when the image background and chessboard texture are similar, or when the 
pattern is similar. After introducing the image reconstruction enhancement module and the 
spatial attention module, the light spots do not disappear. When this background feature is 
closer to the corner feature of the chessboard, it will be mistakenly considered a corner during 
the detection process. After introducing the multi-level attention module, the model can more 
accurately distinguish between chessboard corners and other similar corner features, as 
evidenced by the disappearance of the detected light spots in the figure. When combining all 
three modules, all corners can be accurately detected, the corner positions are closer to the true 
corner positions, and there are no issues with false detection of corners. This proves the 
effectiveness of each module, and the combined effect of the modules is better. 

4.3. Ablation Experiment Analysis 
The task of detecting chessboard corners requires accurate detection of the corner features. 
The spatial attention mechanism focuses on spatial information in the image, i.e., the 
relationships between different pixels in the image. It can help the model identify areas of 
interest in the image. This paper attempts three different spatial attention mechanisms: the first 
is the CBAM (Convolutional Block Attention Module) spatial attention module, the second is the 
EMA (Efficient Multi-Scale Attention) spatial attention module, and the third is to serialize EMA 
and CBAM spatial attention. The specific implementation steps are to introduce spatial 
attention in the skip connection part of UNet. The feature map of each layer is used as the input 
of the spatial attention module, and after passing through the spatial attention module, the 
result is concatenated with the same layer in the upsampling path. The ablation results using 
the three different spatial attentions are shown in the table below. 
After introducing spatial attention, the corner detection rate is improved compared to the 
baseline model UNet, and the average pixel error is lower. However, by reducing the dimension 
to establish relationships between channels, some useful information between channels may 
be reduced, leading to a decrease in the model’s understanding and expression capabilities of 
input features. This can destroy the rich structures within the feature map and the correlations 
between channels, weakening the model’s ability to learn complex patterns and weakening the 
features of chessboard corners. The spatial multi-scale attention module can effectively 
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preserve and utilize the rich information between channels. After introducing the EMA module, 
the corner detection rate is higher than that of the model after introducing the CBAM module, 
and the average pixel error is lower. When both are serialized and connected to the model, the 
corner detection rate is slightly improved compared to the baseline model, but it is lower than 
that of each module individually, and the average pixel error is lower than that of the baseline 
model UNet. The effect of using both spatial attentions in series is worse. The model becomes 
overly complex when both spatial attentions are used in series, which can lead to a decrease in 
model performance in certain cases. Therefore, the spatial multi-scale attention is ultimately 
chosen as the method used in this paper. 
 

Table 2. The results of corner detection ablation experiment 
Category Module Ablation 

CBAM  √  √ 
EMA   √ √ 

Corner error =0.0‒0.2 pixel 0.0416 0.0444 0.0555 0.0361 
Corner error =0.2‒0.4 pixel 0.1944 0.2055 0.2583 0.1861 
Corner error 0.4‒0.6 pixel 0.3361 0.3472 0.3416 0.3194 

Corner error =0.6‒0.8 pixel 0.3250 0.3305 0.2915 0.3333 
Corner error =0.8‒0.9 pixel 0.0722 0.0527 0.0472 0.0833 

Corner error >0.9 pixel 0.0305 0.0194 0.0055 0.0416 
Ed 0.55 0.51 0.48 0.58 

4.4. Corner Detection Comparison Experiments 
The results of the comparison experiments among different corner detection algorithms are 
shown in Table 3. 
 

Table 3. Comparison of experimental results of corner detection 
Method Libcb[20] OpenCV[21] Harris[22][22] UNet Ours 

Ed 2.52 2.23 0.64 0.55 0.43 

 

 
Fig.14 Comparison of corner detection by different methods 
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As can be seen from Table 2, the network model proposed in this paper has an average detection 
error of 43%, which is lower than other corner detection algorithms. Compared with traditional 
sub-pixel corner detection algorithms, the proposed algorithm has the lowest average pixel 
error. 

4.5. Stereo Camera Calibration Experiments 
The chessboard corner detection is implemented using the Harris corner detection algorithm 
and the corner detection algorithm proposed in this paper. According to the Zhang Zhengyou 
camera calibration method, the parameters of the left and right cameras as well as the camera’s 
extrinsic parameters are obtained. The camera intrinsic and extrinsic parameters obtained 
from the Harris corner detection algorithm and the proposed method are shown in Table 4. fx 
and fy represent the normalized focal lengths along the x-axis and y-axis of the image, 
respectively, in units of pixels. k1 and k2 denote the radial distortion caused by lens 
manufacturing defects or non-ideal shapes. Tx, Ty, Tz are the translation vector parameters of 
the camera relative to the left camera. Cx and Cy represent the horizontal and vertical 
coordinates of the origin of the image coordinate system on the image plane, respectively. The 
rotation vectors Rx, Ry, Rz represent the rotation angles around the x, y, and z axes, respectively. 
These rotation matrices are obtained by associating a rotation axis and rotation angle using the 
Rodrigues formula. 
 

Table 4. Camera Parameter Calibration Results 
argument                                                                Harris                          Textual method 

Left camera focal length (fx, fy)      (1047.2652,1048.1153)   (1049.6605, 1049.4557)                  
Right camera focal length (fx, fy)    (1049.4207,1049.4507)   (1048.5490, 1048.4798) 
Left camera main point (Cx, Cy)       (944.2135,525.2804)        (954.8329, 526.4357) 
Right camera main point (Cx, Cy)     (954.3035,536.1620)       (955.1391, 534.6007) 
Left camera distortion                       (k1=0.0730, k2=-0.1078)   (K1=0.0760, K2=-0.1052) 
Right camera distortion                   (k1=0.0740, k2=-0.1103)    (K1=0.0773, K2=-0.1062) 
Rotation vector               (Rx=0.0114, Ry=-0.0116, Ry=0.0068 (Rx=0.0128, Ry=-0.0109, Ry=0.0077) 
Tx, Ty, Tz                                             (39.6477, -0.3189, -1.6705)    (39.9136, -0.3252, -1.685) 

 
The calibration results of the Harris corner detection algorithm and the proposed corner 
detection method are evaluated using the reprojection method. The calculated reprojection 
errors are 0.03 pixels for the Harris corner detection algorithm and 0.02 pixels for the proposed 
method. Compared with traditional sub-pixel corner detection algorithms, the proposed corner 
detection algorithm has higher camera calibration accuracy. 

5. Summary 

This paper designs a binocular camera calibration method based on deep learning corner 
detection. UNet is used as the baseline network for corner detection, and innovations are made 
on top of this model. The results of virtual chessboard image corner detection show that the 
improved model has an average detection error of 43%, and the detection accuracy is 
significantly improved compared to the baseline model. It also achieves good results compared 
with traditional corner detection algorithms, and experiments on real chessboards also obtain 
good detection results. Finally, the improved corner detection algorithm is used for binocular 
calibration, with a reprojection error lower than the reprojection error obtained by the 
traditional sub-pixel corner detection method Harris, improving the accuracy of camera 
calibration. The next step is to try using other models for corner detection to further improve 
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the accuracy of corner detection, and apply this algorithm to practical binocular vision 3D 
reconstruction tasks to verify its effectiveness and practicality. 
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