
Scientific Journal of Intelligent Systems Research                                                                                        Volume 6 Issue 4, 2024 

ISSN: 2664-9640                

9 

Application of Iterative Dynamic Tensor Estimation Algorithm 
based on Norm Minimization in Video Images 

Junchen Li* 
 School of Mathematics and Statistics, Chongqing Technology and Business University, 

Chongqing 400067, China 
*ljcand1412@163.com 

Abstract 
With the advent of the big data era, traditional data analysis tools are facing challenges 
in handling high-dimensional, nonlinear, and heterogeneous data. Tensor factorization 
models have become a hot topic of research due to their ability to deeply mine the 
higher-order structure of data, especially showing broad application prospects in fields 
such as finance, biomedicine, and social sciences. This article focuses on the robust 
estimation techniques of the Tucker tensor factorization model. The innovation of this 
method lies in the establishment of a minimization objective function by introducing an 
exponential squared loss function, followed by the robust estimation of model 
parameters through iterative optimization. The main purpose is to enhance the accuracy 
of estimation and the adaptability of the model to outliers. Subsequent validation was 
conducted through large-scale simulation experiments. Comparison results confirm that 
the robust estimation method proposed in this paper demonstrates significant 
advantages in terms of estimation accuracy and robustness, especially in dealing with 
data with heavier tail distributions, where its performance is particularly outstanding. 
Finally, we apply the method to a set of mobile video data and show that the robust 
approach can lead to better analysis results. 
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1. Introduction 

Tensor factor models are advanced data analysis tools used for processing and analyzing 
multidimensional data. In reference [1], the authors were the pioneers in proposing a modeling 
method for tensor time series factor models, introducing two types of factor load estimation 
methods: TOUUP and TIPUP. [2] combined tensor decomposition with Bayesian estimation 
methods to analyze tensor time series data, which can predict and analyze in cases of many 
missing values in the tensor time series. [3] proposed a computationally efficient PCA and 
orthogonalization algorithm for tensor CP decomposition. [4] proposed a tensor time series 
factor model method, mainly using tensor CP decomposition for analyzing high-dimensional 
dynamic tensor time series. Since the vector column space after CP decomposition has 
uniqueness, it has distinctly different estimation properties from the Tucker tensor 
decomposition factor model. [5] proposed improved versions of the iTOPIP and iTIPUP 
iterative algorithms based on the combination of TOUPU and TIPUP, with greater estimation 
accuracy but at a higher computational cost. [6] introduced a pre-averaging method, it was 
compared with TOPUP and TIPUP, showing that this method has better estimation accuracy 
under Gaussian tensor data. [7] proposed a factor estimation method for heavy-tailed matrix 
time series data. However, there is a lack of research on tensor time series data of third order 
and above. [8] proposed the moPCA estimation method for tensor factor matrixization and 
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derived the iterative version of the IPmoPCA method. Compared to the iTOPIP and iTIPUP 
iterative algorithms by [5], this method has significantly lower computational costs and notably 
superior estimation accuracy than the methods mentioned above. However, the IPmoPCA 
method is effective only for nonheavy-tailed data and essentially fails for tensor heavy-tailed 
data. This letter primarily introduces an exponential squared loss function into the Tucker 
tensor factorization model, establishing a robust factor estimation method. A new weighted 
iterative projection estimation method is proposed, and through random simulations, it has 
been confirmed that the weighted iterative projection estimation method under exponential 
squared loss outperforms other methods. Finally, the effectiveness of the method is validated 
through analysis of actual data. 

2. Robust Iterative Algorithm for Tensor Factor Models 

2.1. Symbol Description 
For a matrix 𝑨, 𝑨  is the transpose of 𝑨, 𝐓𝐫 (𝑨) is the trace of 𝑨. For two matrices 𝑨 ∈ ℝ𝑰×𝑱 and 
𝑩 ∈ ℝ𝑲×𝑳, 𝑨 ⊗ 𝑩 = 𝒂𝒊𝒋𝑩

𝑰×𝑱
∈ ℝ𝑰𝑲×𝑱𝑳 denotes the Kronecker product(a special form of tensor 

outer product) of matrices 𝑨  and 𝑩 . Let 𝒑 𝒅 = ∏𝒊 𝒅
𝑫  𝒑𝒊 = 𝒑𝟏𝒑𝟐 ⋯ 𝒑𝒅 𝟏𝒑𝒅 𝟏 ⋯ 𝒑𝑫  and 𝒌 𝒅 =

∏𝒊 𝒅
𝑫  𝒌𝒊 =  𝒌𝟏𝒌𝟐 ⋯ 𝒌𝒅 𝟏𝒌𝒅 𝟏 ⋯ 𝒌𝑫  with 𝒅  being the placeholder and 𝑨[𝑫]/{𝒅} = 𝑨𝑫 ⊗ ⋯ ⊗

𝑨𝒅 𝟏 ⊗ 𝑨𝒅 𝟏 ⊗ ⋯ ⊗ 𝑨𝟏 ∈ ℝ𝒑 𝒅 . For a tensor 𝓧 ∈ ℝ𝒑𝟏×𝒑𝟐×⋯×𝒑𝑫, the mode- 𝒅 unfolding matrix 
𝓧(𝒅) ∈ ℝ𝒑𝒅×𝒑 𝒅  is a 𝒑𝒅 × 𝒑 𝒅 matrix by assembling all 𝒑 𝒅 mode- 𝒅 fibers as columns of the 
matrix, which maps a tensor 𝓧 to a matrix 𝓧(𝒅) ∈ ℝ𝒑𝒅×𝒑 𝒅 . The 𝒅-mode product of tensor 𝓢 ∈
ℝ𝒓𝟏×⋯×𝒓𝑫  and matrix 𝑼 ∈ ℝ𝒑𝒅×𝒓𝒅  is defined as 𝓢 ×  𝒅𝑼 ∈  ℝ𝒓𝟏×⋯×𝒓𝒅 𝟏×𝒑𝒅×𝒓𝒅 𝟏×⋯×𝒓𝑫  with the 
(𝒊𝟏, … , 𝒊𝑫) -th element (𝓢 ×  𝒅𝑼)𝒊𝟏,…,𝒊𝑫

= ∑𝒋𝒅 𝟏
𝒓𝒅  𝐒𝒊𝟏,…,𝒋𝒅,…,𝒊𝑫

𝑼𝒊𝒅,𝒋𝒅
 and 𝓨(𝒌) =  𝑼𝓢(𝒌) . The 

Frobenious norm of a tensor 𝓧 ∈ ℝ𝟏
𝒑𝟏×𝒑𝟐×⋯×𝒑𝑫  is defined as ∥ 𝓧 ∥𝑭=

∑𝒊𝟏 𝟏
𝒑𝟏  ⋯ ∑𝒊𝑫 𝟏

𝒑𝑫  𝓧𝒊𝟏⋯𝒊𝑫

𝟐
𝟏/𝟐

. 

2.2. Exponentially Squared Weighted Iterative Estimation 
For the observed tensor time series 𝒳 , … , 𝒳 ∈ ℝ × ×⋯× , consider the following TFM with 
a Tucker low rank structure: 
 

𝒳 = 𝒮 + ℰ ,  𝒮 = ℱ × 𝐴 × ⋯ × 𝐴 ,                                           (1) 
 
where 𝒮  is an unknown low-rank signal part, ℱ ∈  ℝ × ×⋯×  is a low-dimensional 
(𝑘 ≪ 𝑝 ) latent tensor factor, 𝐴 ∈ ℝ ×  is an unknown mode- 𝑑 loading matrix for 𝑑 ∈ [𝐷] 
,×  is the mode- 𝑑 product, and ℰ ∈ ℝ × ×⋯×  is a noise tensor. Model (2) can be rewritten 
as the Tucker-TFM: 
 

𝒳 = ℱ ×  𝐴 × … × 𝐴 + ℰ .                                                    (2) 
 
In order to ensure model (2)to be identifiable, we introduce the identifiability condition: 
 

𝐴 𝐴 = 𝐼   for  𝑑 = 1,2, ⋯ , 𝐷.                                                   (3) 

 
The estimation of the load matrix can be solved by establishing a minimization objective 
function through the following exponential square function: 
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The estimation of the load matrix can be solved by establishing a minimization objective 
function through the following exponential square function: 
 

 min{𝐀,ℱ }  𝜙 ∥∥𝑥 − ℱ × 𝐴 ∥∥ = min{𝔸,ℱ }   ∑   1 − exp −
∥∥ ℱ × ∥∥

  s.t. ∀𝑑 ∈ {1, ⋯ , 𝐷}, 𝐴 𝐴 = 𝐼 , 𝐴[ ]/{ }𝐴[ ]/{ } = 𝐼 ,

  (4) 

 
where ℎ is an adjustment parameter. The tuning parameter ℎ controls the sensitivity of the 
estimator to outliers. By appropriately choosing ℎ, a good balance between bias and variance 
can be found to improve the robustness of the estimate. 

For the term ∥∥𝒳 − ℱ × 𝐴 ∥∥ , upon simplification, we obtain: 

 

∥∥𝒳 − ℱ × 𝐴 ∥∥ = ∥∥𝒳
( )

− (ℱ × 𝐴 )( )
∥∥

  = Tr 𝒳
( )

𝒳
( )

− 2Tr 𝒳
( )

𝐴 ℱ
( )

𝐴[ ]/{ }  + 𝑝Tr ℱ
( )

ℱ
( )

  

              (5) 

 
To solve the optimization problem of the objective function (4), we assume that given 𝐴  and 
𝐴([ ]/{ }), the value of tensor ℱ  does not affect the optimal solution of the objective function 
ℒexponential . Therefore, for any 1 ≤ 𝑡 ≤ 𝑇, the firstorder condition is: 

 

ℱ
( ) Tr 𝒳

( )
𝒳

( )
− 2Tr 𝒳

( )
𝐴 ℱ

( )
𝐴[ ]/{ }  + 𝑝Tr ℱ

( )
ℱ

( )
= 0

  
        (6) 

 
We can obtain: 
 

ℱ
( )

= 𝐴 𝒳
( )

𝐴[ ]/[ ]                                                         (7) 

 

Using (5) to replace ∥∥𝒳 − ℱ ×  𝐴 ∥∥  in (4), and substituting ℱ( ) in (4) with (7), under the 

constraints 𝐴 𝐴 = 𝐼 , 𝐴[ ]/[ ]𝐴[ ]/[ ] = 𝐼 , 𝑑 = 1, ⋯ , 𝐷, the optimization problem in 

(4) can be solved by minimizing the following Lagrangian function: 
 

ℒ  = ∑     1 − exp − Tr 𝑥
( )

𝑥
( )

− Tr 𝑥
( )

𝐴 𝐴 𝑥
( )

𝐴[ ]/{ }𝐴[ ]/{ } ,

  
      (8) 

 
where Θ  is parameter matrices. By derivation of the Lagrangian function constructed in (8), 
we can get: 
 

ℒ
=  − ∑    𝑤 , 𝒳

( )
𝐴[ ]/{ }𝐴[ ]/{ }𝒳

( )
𝐴 + 𝐴 Θ = 0

  
                (9) 

 
where (9) can be equivalently expressed as: 
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∑   𝑤 , 𝒳
( )

𝐴[ ]/{ }𝐴[ ]/{ }𝒳
( )

𝐴 = 𝐴 Θ ,                                  (10) 

 
where 𝑤 ,  is the weighted weight under the exponential square loss function, which can be 
expressed as: 
 

𝑤 , = exp −
 

( ) ( )

+ Tr 𝑥
( )

𝐴 𝐴 𝑥
( )

𝐴[ ]/{ }𝐴[ ]/{ }          (11) 

 
Transform the left side of equation (9) and express it by M  and M[ ]/{ } respectively: 

 

M = ∑   𝑤 , 𝒳
( )

𝐴[ ]/{ }𝐴[ ]/{ }𝒳
( )                                   (12) 

 
Substituting (12) into (10) results in: 
 

M 𝐴 = 𝐴 Θ                                                            (13) 
 
Arrange the first 𝑘  largest eigenvalues of the matrix M  in descending order as 𝜆 , , … , 𝜆 , , 
and their corresponding eigenvectors are 𝑈 = 𝑢 , ⋯ 𝑢 , . Then, 

 

𝐴∗ : = 𝑝 𝑈                                                               (14) 

 
can be used as the estimate for 𝐴 , and: 
 

Θ∗ : = diag 𝜆 , , … , 𝜆 ,                                                       (15) 

 
be used as the estimate for Θ . 
In the process of solving for 𝐴  through (12), 𝐴[ ]∖{ } is required as a condition for constituting 
M , thus introducing the concept of iterative estimation. The exponential square weighted 
iterative algorithm is shown in the following Algorithm : 
Input: tensor data {𝒳 } , factor numbers {𝑘 } . initial estimation of loading matrices 

𝐴
( ) . 

Output: loading matrixs 𝐴
( , )  and signal tensor �̂�( , ). 

Step 1: compute 
 

�̂�[ ]/{ }
( , )

= �̂�
( , )

⊗ ⋯ ⊗ �̂�
( , )

⊗ �̂�
( , )

⊗ ⋯ ⊗ �̂�
( , ) 

 
Step 2: compute 
 

𝑤 ,
( )

 =
1

ℎ
exp −

1

ℎ
Tr 𝒳

( )
𝒳

( )
−

1

𝑝
Tr 𝒳

( )
�̂�

( , )
�̂�

( , )
𝒳

( )
�̂�[ ]/{ }

( , )
�̂�[ ]/{ }

( , )
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Step 3: compute 
 

M
( , )

=
1

𝑇𝑝𝑝
  𝑤 ,

( )
𝒳

( )
�̂�[ ]/{ }

( , )
�̂�[ ]/{ }

( , )
𝒳

( )  

 

Step 4: compute 𝐴( , ) as 𝑝  times the matrix with columns being the first 𝑘  eigenvectors 

of M( , ). 
Step 5: repeat steps 1 to 4 until convergence, or up to the maximum number of iterations, as 
well as the core tensor and signal tensor at step 𝑠 + 1. 
 

ℱ̂
( , )

=
1

𝑝
𝒳 × �̂�

( , )
× ⋯ × �̂�

( , )
,

 �̂�
( , )

= ℱ̂
( , )

× �̂�
( , )

× ⋯ × �̂�
( , )

 

2.3. Tuning Parameter Selection 
 In the previous section, when introducing the exponential squared loss to establish the 
minimization objective function, attention was paid to the parameter value ℎ of the function 
itself. 
 

ℒexponential = min
{ ,ℱ }

 𝐿exponential ∥∥𝒳 − ℱ × 𝐴 ∥∥

  = min
{ ,ℱ }

  ∑     1 − exp −
∥∥𝒳 ℱ × ∥∥

                             (16) 

 
In practice, when solving the minimization problem in (5), it should satisfy ℎ ≫ ∥∥𝒳 −
ℱ ×  𝐴 ∥∥ . Therefore, when about to perform estimation, the selection is ℎ = 

arg max  𝑇 ∏  ∥∥𝒳 − ℱ
( )

×  �̂�
( )

∥∥ . 

3. Simulation Study 

3.1. Data Generation 
In this section we exhibit the finite sample performance of the proposed robust procedure by 
Monte Carlo Simulation. Let 𝒳  be the observed tensor at time 𝑡, 𝑡 = 1,2, … , 𝑇 . Suppose that 
tensor observations are generated by an order-3 tensor factor model: 
 

𝒳 = ℱ × 𝐴 × 𝐴 × 𝐴 + ℰ                                                    (17) 
 
where 𝒳 ∈ 𝑅 × × , ℱ ∈ 𝑅 × × , 𝐴 ∈ 𝑅 ×  with the entries of 𝐴 , 𝐴  and 𝐴  generated 
independently from the uniform distribution 𝒰(−1,1). Here assume that 𝑘 = 𝑘 = 𝑘 = 2. 
The core tensor factor ℱ ∈ 𝑅 × ×  is generated by the model: 
 

ℱ = 𝜙ℱ + 1 − 𝜙 𝒱 ,  𝑡 ∈ [𝑇]                                                 (18) 
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where vec (𝒱 ) ∼ 𝑁 (𝟎, 𝐈 ), 𝑘 = 𝑘 𝑘 𝑘 = 8 , and 𝜙  controls temporal correlation of tensor 
factor. The tensor noise ℰ ∈ 𝑅 × ×  is generated by the model: 
 

ℰ = 𝜓ℰ + 1 − 𝜓 𝒰 ,  𝑡 ∈ [𝑇]                                                  (19) 
 
where 𝒰  is a tensor normal or 𝑡 distribution, and 𝜓 controls temporal correlation of ℰ . If 𝒰 ∼
𝒯𝒩(ℳ, Σ , Σ , Σ ), then Vec (𝒰 ) ∼ 𝒩(Vec (ℳ), Σ ⊗ Σ ⊗ Σ ). If 𝒰  is a tensor 𝑡 distribution 
𝑡 (ℳ, Σ , Σ , Σ ), then Vec (𝒰 ) is a multivariate 𝑡 distribution 𝑡 (ℳ, Σ ⊗ Σ ⊗ Σ ). Here set 
𝜈( degrees of freedom)=2 and ℳ = 0. Let 𝚺  be the matrix with 1 on the diagonal and 1/𝑝  on 
the off-diagonal for 𝑙 = 1,2,3. 
For the selection of dimensions for 𝒳 , the dimensions (𝑝 , 𝑝 , 𝑝 )  of 𝒳  are set to size 
1: (10,10,10), size2: (20,20,50), and size 3: (20,50,100). The time series 𝑇 is set to 𝑇 = 20, 𝑇 =
100. For 𝜙 and 𝜓, we consider the 𝜙 = 0.8 and 𝜓 = 0.1. 
Next, it will compare the Exponential Loss Weighted Iterative Method (ESWI) proposed in this 
paper with other methods: IPmoPCA, iTOPUP, and iTIPUP. 

3.2. Factor Loading Space Estimation 
During the process of estimating the loading matrix, we utilize the comparison method 
proposed by [5], for the estimated matrix �̂�  and the actual matrix 𝐴 . The distance between 
their column spaces is defined as: 
 

𝒟 �̂� , 𝐴 = 1 − Tr �̂� �̂� 𝑄 𝑄 , 𝑑 = 1,2,3                                   (20) 

 
where �̂�  and 𝑄  are the left singular matrices of the estimated loading matrix �̂�  and the true 
loading matrix 𝐴 , respectively. Table I illustrate that ESWI and IPmoPCA achieve superior 
accuracy and consistency in estimating under normal distribution conditions, with ESWI 
particularly excelling in handling heavy-tailed ( 𝑡  distribution) data across 100 tests. ESWI 
stands out for its robustness in both scenarios, proving to be the most stable and reliable 
method among the four evaluated. 
 

 
(a)𝒟 �̂� , 𝐴              (b)𝒟 �̂� , 𝐴                (c)𝒟 �̂� , 𝐴  
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(d)𝒟 �̂� , 𝐴              (e)𝒟 �̂� , 𝐴                (f)𝒟 �̂� , 𝐴  

Figure 1. Under the assumption of normal distribution (non-heavy-tailed data), the 
calculation results of 𝒟 �̂� , 𝐴 , 𝑑 = 1,2,3 (repeated 100 times) 

 

 
(a)𝒟 �̂� , 𝐴              (b)𝒟 �̂� , 𝐴                (c)𝒟 �̂� , 𝐴  

 
(d)𝒟 �̂� , 𝐴                   (e)𝒟 �̂� , 𝐴                       (f)𝒟 �̂� , 𝐴  

Figure 2. Under the assumption of 𝑡  distribution(heavy-tailed data), the calculation results of 
𝒟 �̂� , 𝐴 , 𝑑 = 1.2,3 (repeated 100 times) 

 
Figures 1 and 2 illustrate that ESWI and IPmoPCA achieve superior accuracy and consistency 
in estimating under normal distribution conditions, with ESWI particularly excelling in 
handling heavy-tailed ( 𝑡  distribution) data across 100 ) tests. ESWI stands out for its 
robustness in both scenarios, proving to be the most stable and reliable method among the four 
evaluated. 
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3.3. Estimation of the Signal Part 
This section compares various methods for estimating the common components 𝑆  in 
simulated scenarios, using Mean Squared Error (MSE) between the estimated signal �̂�  and the 
true signal 𝑆  for evaluation: 
 

MSE = ∑   ∥∥�̂� − 𝑆 ∥∥                                                          (21) 

 
Figures 3 and 4 reveal that ESWI, IPmoPCA, and iTOPUP perform comparably in non-heavy-
tailed data, but ESWI excels in heavy-tailed data with robust estimation. Overall. ESWI 
demonstrates superior robustness and outperforms the other methods. 
 

 
Figure 3. Estimation results of the signal part 𝑆  under the assumption of normal distribution 

(non-heavy-tailed data) (repeated 100 times) 
 

 
Figure 4. Estimation results of the signal part 𝑆  under the assumption of 𝑡  distribution 

(heavy-tailed data) (repeated 100 times) 

4. Application 

In this section, use tensor factorization methods to a set of Moving MNIST data consisting of 
100 video sequences, each comprising 20 frames. In each video sequence, two digits move 
independently across the frames, where each frame is an image with a spatial resolution of 
64 × 64 pixels. This data can be represented as a collection of third-order tensor time series 
𝒳 ∈ ℝ × ×  for 𝑡 ∈ [100], where the first and second modes are the pixel row and column 
coordinates, respectively, and the third mode is the frame number. Figure 5 displays 𝒳 , for 𝑡 ∈
[100]. 
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Figure 5. Third-order tensor video data 𝒳 ∈ ℝ × × , 𝑡 = 1, ⋯ ,100. 

 
First perform tensor Tucker decomposition modeling: 
 

𝒳 = ℱ ×  𝐴 × 𝐴 × 𝐴 + ℰ , 𝑡 = 1, ⋯ ,100                                    (22) 
 
where the matrices 𝐴 ∈ ℝ × , 𝐴 ∈ ℝ ×  and 𝐴 ∈ ℝ × , ℱ ∈ ℝ × ×  are the common 
factor tensor. 𝑘 , 𝑘  and 𝑘  are the numbers of factors to be determined. 
Figures 6 and 7 show the real video motion and the estimated motion trajectory of the signal �̂�  
at time 𝑡 = 15 , respectively. As the number of factors (𝑘 , 𝑘 , 𝑘 )  increases, the recovery 
performance of the four methods becomes stronger. The ESWI method is not only better than 
other methods in image recovery, but also can more accurately reflect the motion patterns in 
the 20 -frame dynamic action of the video. 
 

 
(a) Original video            (b)ESWI              (c)IPmoPCA         (d)iTOPUP            (e)iTIPUP 

Figure 6. When the number of factors 𝑘 = 4, 𝑘 = 4, 𝑘 = 3, 𝑡 = 15 video of �̂�  reconstruction 
for ESWI, IPmoPCA, iTOPUP, and iTIPUP. 

 

 
(a) Original video            (b)ESWI              (c)IPmoPCA         (d)iTOPUP            (e)iTIPUP 
Figure 7. When the number of factors 𝑘 = 16, 𝑘 = 16, 𝑘 = 8, 𝑡 = 15 video of �̂�  

reconstruction for ESWI, IPmoPCA, iTOPUP, and iTIPUP. 
 
The ESWI method performs exceptionally well in the restoration of video images. For further 
research, we will focus solely on analyzing using the ESWI method. Regarding the final selection 
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of the number of factors, to ensure that the explained variance in mode1, mode2, and mode3 is 
above 80% , we choose 𝑘 = 4, 𝑘 = 4, 𝑘 = 3  as the estimated number of factors. Thus the 
loading matrices 𝐴 ∈ ℝ × , 𝐴 ∈ ℝ ×  and 𝐴 ∈ ℝ × . Actually, the load matrix 𝐴  and 𝐴  
respectively represent the influence on the x-coordinates and 𝑦-coordinates of a 64 pixel grid. 
The left side of Figure 8 shows the stacked image we created from 2000 images of 64 × 64 
pixels in 𝒳 ; the higher the value, the more frequently that area appears in the images. It can be 
intuitively seen that the regions of motion in the 2000 video images primarily occur within the 
X-coordinate range of 15-40 and Y-coordinate range of 15-40. After multiplying the values of 
𝐴  and 𝐴 , the right image was plotted. It reveals that the loads 𝐴  and 𝐴  accurately reflect the 
main motion areas of the images, especially within the X-coordinate range of 20-35 and Y-
coordinate range of 25-30, where the images appeared most frequently. 
 

 
(a) Real situation                                 (b)Estimated situation 

Figure 8. Frequency diagram in video images and estimation results of load 𝐴  and 𝐴 . 
 
Figure 9 depicts the heatmap of load estimates for 𝐴  and the clustering results for frames 1-
20. 𝐴  clusters frames 1-7, 8-13, and 14-20 respectively. This is because, for the motion of 
letters in 100 different video images, the predominant movement pattern in frames 1-7 is 
diagonal motion. In frames 8-13, the two letters move in opposite directions, and in frames 14-
20, the two letters appear inverted and then move. 
 

 
(a) Load matrix heatmap of    𝐴                (b)Clustering results 

Figure 9. Estimated load diagram and clustering results of 𝐴 . 
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5. Conclusion 

This paper proposes the ESWI method for the optimization objective based on norm 
minimization. Through a large number of data simulations, it is verified that this method is 
superior to other methods. The ESWI method is then applied to a set of video data. By 
comparing with other methods, it can be concluded that the ESWI method can reconstruct 
tensor video data well, capture the information in the key pixel principal component analysis, 
and determine the letters in the video image. sport mode. 
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