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Abstract 
Detecting hazardous materials in X-ray security images is crucial for public safety and 
property protection. Currently, the identification of such materials in X-ray luggage 
scans heavily relies on manual inspection by security officers. To enhance the accuracy 
of automated detection, this paper introduces a novel SE-YOLO model based on the 
YOLOv8  architecture.  Firstly, SCDConv is implemented to remove convolutional strides 
and pooling operations by integrating channel spatial-to-depth layers and strideless 
convolution layers. Secondly, an EMMA attention module is developed to partition 
feature information along the channel dimension, fostering interaction and fusion of 
multidimensional data in the fea- ture space through parallel branch structures. Lastly, 
a high-resolution detection head is designed to facilitate more precise category and 
confidence predictions. Experimental results on the SIXray dataset demonstrate that the 
SE-YOLO model achieves a detection accuracy of 92.3%, a 2.1% improvement over the 
YOLOv8 model. 
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1. Introduction 

In recent years, the escalating threats of terrorism and illicit goods have highlighted the 
indispensable role of X-ray security inspection technology in the realm of safety. Widely 
deployed in public venues like airports, train stations, and border checkpoints, X-ray security 
inspection images serve the crucial purpose of detecting hazardous materials to ensure public 
security. However, the task of identifying hazardous items in these images presents numerous 
challenges. This is primarily attributed to the complex shapes, densities, and materials of 
hazardous items, making them indistinguishable from the surrounding environment in X-ray 
scans. Additionally, X-ray security inspec- tion images often contain a plethora of interfering 
elements such as luggage, clothing, and metallic objects, which can obscure or distort the 
characteristics of small haz- ardous objects. Furthermore, the resolution and quality of X-ray 
security inspection images can significantly impact detection accuracy. Addressing these 
challenges and enhancing the precision of hazardous material detection in X-ray security 
inspection images remains an ongoing and formidable task. 
Detecting hazardous items in X-ray security inspection images involves two pri- mary 
methodologies: traditional  machine  learning  and  deep  learning  approaches. Traditional 
machine learning methods rely on manual feature extraction and classifier utilization for 
hazardous item detection. However, these traditional approaches are lim- ited as they often 
require significant manual intervention and involve complex feature engineering. Their 
effectiveness diminishes when dealing with X-ray security inspec- tion images containing 
complex features. With the rise of deep learning, numerous detection methods based on deep 
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learning have been introduced to enhance security screening effectiveness and reduce the 
workload of human operators[16]. Compared to traditional machine learning algorithms, 
neural networks benefit from deeper layers and larger feature spaces, allowing them to be 
trained on large datasets to achieve more expressive results [22]. Deep learning-based object 
detection algorithms can be classified into two categories: two-stage algorithms and single-
stage algorithms. Two- stage algorithms first generate region proposals and then classify them, 
resulting in longer detection times and poorer real-time performance. Representative 
algorithms of two-stage algorithms include R-CNN[4], Fast-RCNN [3], and Faster R-CNN [18]. 
Single-stage algorithms, such as YOLO  (you only look once, YOLO)[17] and SSD (single-shot 
multi-box detector)[11] series algorithms, directly predict object positions and categories using 
convolutional neural networks, offering faster detection speeds and better real-time 
performance. 
With the development and refinement of various algorithms, there has been continuous 
improvement in the accuracy and speed of detecting hazardous items in X-ray security 
inspection images. However, existing algorithms often lack optimization for detecting small-
sized hazardous items in security inspection images. This deficiency results in models 
consistently neglecting the detection capability for small-sized hazardous items, thus limiting 
further enhancement in average detection accuracy. In response to the inadequacy of existing 
models in detecting small-sized hazardous items, this paper proposes a novel X-ray image 
hazardous item detection algorithm-SE-YOLO. This paper contributes in the following ways: 
• SCDConv is devised to enhance the extraction capability of fine-grained feature information. 
By eliminating convolutional strides and pooling operations through the Channel Spatial to 
Depth (SCD) layer, SCDConv reduces the loss of fine-grained information during convolution 
operations. 
• The EMMA attention module facilitates the interaction and fusion of multidimensional 
information in the channel space through parallel branch structures, thereby augmenting the 
model’s multiscale feature extraction capability. 
• To enable the model to capture small-sized hazardous items more effectively, a high- 
resolution detection head is designed. This detection head enables the model to make more 
optimized category and confidence predictions. 

2. Related Work 

2.1. X-ray Security Inspection Image Detection 
Currently, detection in X-ray security inspection images is predominantly categorized into 
traditional machine learning methods and deep learning methods. Traditional machine 
learning methods involve manual feature design and the utilization of machine learning 
classifiers for feature classification. These methods have achieved significant progress. For 
instance, Zhu et al. [31] utilized low-level features such as color, texture, shape, and edge 
features in X-ray images to extract higher-level features for contraband detection. Turcsany et 
al. [23] employed Support Vector Machine (SVM) and Speeded- Up Robust Features  (SURF) to 
construct a visual bag-of-words model, clustering feature descriptors to generate visual words, 
and employing them for contraband iden- tification in dual-energy X-ray images. Kundegorski 
et al.[8]explored various feature point descriptors as variants of visual words in Bag-of-Visual-
Words (BoVW)representation schemes for image-based threat detection in luggage security X-
ray images. Vukadinovic et al.[24] constructed a Support Vector Machine (SVM) classifier based 
on Local Binary Patterns (LBP) texture features. However, X-ray hazardous item detection 
algorithms based on traditional machine learning methods necessitate manual configuration of 
detectors and classifiers, resulting in high algorithmic complexity and low accuracy. 
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Deep learning methods exhibit stronger feature representation capabilities than traditional 
methods, facilitating automatic learning and extraction of higher-level semantic features. To 
address challenges in X-ray baggage image security detection, Dong et al.[2] proposed an 
enhanced YOLOv5 network model for contraband detection. They introduced a convolutional 
attention module to enhance the network’s extraction of deep important features of contraband 
items, utilized the Mixup data augmentation strategy to simulate detection scenarios with 
highly overlapped and occluded items, and employed a weighted bounding box fusion 
algorithm to optimize redundant prediction boxes. Miao et al.[15] proposed a model based on 
an improved capsule network (DMF and SE Capsule) for contraband detection in X-ray images. 
This model enhances traditional capsule networks with feature enhancement (dilated 
convolution multi-scale feature fusion, DMF) and feature selection (squeezeand-excitation 
block, SE) modules. Wu et al.[27] introduced a mask self-attention mechanism on top of YOLOv5, 
enhancing its feature representation capacity.They also introduced the Quality Focal Loss 
function to effectively alleviate class imbalance issues. Yu et al.[29] redesigned the path 
aggregation network (PANet) module of YOLOv4 using deformable convolutions. They also 
introduced the Focal-EIOU loss function to address severe loss value oscillations when handling 
low-quality samples. Ma et al.[12] embedded learnable Gabor convolution layers into the 
network’s  lower layers and designed a Spatial Attention (SA) mechanism to weight the output 
features of Gabor convolution layers. They utilized the Global Context Feature Extraction (GCFE) 
module to extract multiscale global context information of objects and proposed the Dual-Scale 
Feature Aggregation (DSFA) module to fuse these global features with features from another 
layer. Su et al.[19] constructed a module for rotation and occlusion removal (DROM). They 
employed edge, color, and Oriented FAST and Rotated BRIEF (ORB) features to generate 
integrated feature maps. Zhang et al.[30] proposed a Deformable Attention Module (MAM), 
connecting corresponding backbone output feature layers with Large Kernel Attention (LKA) 
blocks to better focus on effective feature information in feature maps using the adaptive 
selection feature of the self-attention module. They replaced the Feature Pyramid Network 
(FPN) with a Path Aggregation Network (PAN) and added Conv-MLP blocks to the self-bottom-
up feature fusion part of the PAN network to reduce the loss of some low-level details. Wang et 
al.[26] introduced an object detection algorithm based on the SSD model, using an improved 
HarDNet network as the backbone network and introducing multi-scale feature fusion and 
attention mechanisms to improve detection accuracy. Li et al.[10] improved the upsampling 
module by embedding channel convolution self-attention and spatial convolution self-attention 
in the CARAFE structure and reinforced the new upsampling operator to capture dependencies 
between longdistance features. The aforementioned studies have enhanced neural network 
models by improving the network structure, introducing attention mechanisms, and employing 
new feature fusion techniques, thereby making them more suitable for various detection tasks. 

2.2. Fine-grained Feature Extraction 
As the prevalence of scenarios necessitating small object detection grows, there is a burgeoning 
interest in refining feature extraction techniques for nuanced analysis. Fine-grained feature 
extraction aims to distill intricate details from images or videos, facilitating precise 
identification and understanding of small objects or scenes. Inspired by the Bidirectional 
Feature Pyramid Network (BiFPN), Huang et al.[7] introduced the Small Target Detection Layer 
(STPL) into the YOLOv5 framework to identify minor surface defects on steel wires. Li et al.[20] 
integrated the Channel Attention (CA) module, extending the reach of shallow features in the 
original FPNet and bolstering small object detection capabilities. Hu et al.[6] revamped the 
backbone structure of their object recognition algorithm with the Deformable ConvNets v2 
module and global attention mechanism, curbing feature loss during network processing and 
enhancing sensitivity to small-scale objects. Xiong et al.[28] employed soft pooling to fortify 
feature extraction networks, mitigating the loss of crucial edge information in small objects 
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inherent in traditional downsampling techniques. They amalgamated learnable parameters in 
the feature fusion process to ensure the preservation of small object information amid larger 
object features during fusion. Additionally, they introduced an auxiliary feature extraction layer 
for comprehensive capture of essential shallow information about small objects. Ma et al.[13] 
utilized an efficient channel attention mechanism to extract backbone features and combined 
it with the Expanded Scale Feature Pyramid Network to streamline computation and enrich 
small object detection capabilities. Cheng et al.[1] employed the k-means++ algorithm for more 
accurate anchor box initialization and replaced standard convolution blocks with full-
dimensional dynamic convolutions in the backbone network to enhance feature extraction for 
small objects. Moreover, they inserted a Global Attention Mechanism (GAM) into the neck 
network to focus on global information extraction, effectively addressing sparse object feature 
challenges. Incorporating WiseIoU (WIoU) mitigates harmful gradients from low-quality 
annotation data, thereby improving small object detection accuracy. Through attention 
mechanism integration, feature extraction network optimization, and anchor box selection 
algorithm refinement, these research efforts have bolstered object detection algorithms’ ability 
to extract fine-grained features and improve small object detection accuracy. 

3. Theoretical Framework 

3.1. YOLOv8 
YOLOv8 stands as a refinement built upon the foundation of YOLOv5. Illustrated in Figure 1, the 
YOLOv8 model incorporates the concept of Cross-Stage Partial (CSP) components[25] and 
partitions the overarching model architecture into backbone, neck, and head networks. Similar 
to its predecessor, YOLOv5, YOLOv8 offers models of different scales (N/S/M/L/X) based on 
scaling coefficients to cater to various real-world scenarios. YOLOv8 adopts a novel decoupled 
head structure, segregating the classification and detection heads to enable more focused 
optimization and training. The head segment of YOLOv8 encompasses multiple target detection 
networks with varying resolutions for detecting objects of different sizes, featuring resolutions 
of 20×20, 40×40, and 80×80, respectively. This study introduces a novel detection head with a 
resolution of 160×160 to enhance the model’s capacity in detecting small hazardous objects. 
Furthermore, YOLOv8 transitions from anchor-based methods to anchor-free approaches. In 
terms of loss computation, YOLOv8 employs the Task Aligned Assigner positive sample 
allocation strategy and integrates Distribution Focal Loss to guide the model towards 
prioritizing object features. This loss calculation strategy empowers the model to glean 
essential object characteristics, thereby enhancing detection accuracy. 

3.2. SE-YOLO 
In this research, we propose an enhanced X-ray baggage inspection algorithm, SEYOLO, based 
on the YOLOv8n architecture, as illustrated in Fig. 1. SE-YOLO primarily focuses on improving 
the feature extraction and fusion capabilities for smallsized hazardous objects. To achieve this, 
we devised the SCDConv module to enhance the backbone network’s ability to extract fine-
grained features. Moreover, we strengthened the neck network’s multi-dimensional feature 
fusion capability by integrating the EMMA attention module following the convolutional 
operations. Finally, a novel highresolution detection head was designed to enhance the 
recognition capability for small objects. 
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Fig. 1 YOLOv8 

3.2.1. SCDConv 
In conventional convolutional operations, information loss occurs due to the presence of 
convolution strides and pooling layers during feature extraction. While this loss may be 
acceptable for larger objects, it significantly hampers the detection of small objects by 
exacerbating the difficulty in detecting objects with limited pixels. To mitigate the impact of 
information loss and insufficient feature learning in detecting small hazardous items, this study 
was inspired by the SPDConv module[21] and devised a module named SCDConv. SPDConv 
addresses fine-grained feature loss by eliminating convolution strides and pooling layers. 
Illustrated in Fig. 2, the SPDConv structure replaces traditional convolution operations with 
spatial-to-depth (SPD) layers and replaces pooling layers with strideless convolution layers. 
This substitution scheme aids in preserving fine-grained information and enhancing feature 
learning capability. 
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Fig. 2 SE-YOLO 

 
Following each SPD layer, a strideless convolution operation is introduced to minimize the 
increase in the number of channels in the augmented convolutional layers, leveraging learnable 
parameters. In Fig. 3(a)(b)(c), four sub-maps with shapes of (S/2,S/2,C1) are generated, 
resulting in a twofold downsampling of X. Subsequently, these sub-feature maps are 
concatenated along the channel dimension to yield a feature map X’, with reduced spatial 
dimensions by a scale factor and increased channel dimensions by a factor of 2. The strideless 
convolution operation added after the SPD layer adjusts the channel dimension of the feature 
map X’ to C2, aiming to preserve all feature information to the maximum extent. 
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Fig. 3 SPDConv 

 

 
Fig. 4 SCDConv 

 
Derived from SPDConv, SCDConv’s structure is depicted in Fig. 4. In a similar vein to SPDConv, 
SCDConv also conducts downsampling of channel dimension information. Feature information 
is segregated into spatial and channel dimensions, and their interaction is facilitated through 
the Channel-Space to Depth (SCD) layer. This design effectively captures multidimensional 
details and enhances the extraction of fine-grained features. Illustrated in Fig. 4(a)(b)(c), with 
a scale factor of 2, eight sub-maps are derived, each with shapes of (S/2, S/2, C1/2), leading to 
a twofold downsampling of X. These sub-feature maps are subsequently concatenated along the 
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channel dimension to yield a new feature map X’. Unlike SPDConv, the channel dimension of the 
feature map X’ obtained by SCDConv is reorganized based on the channel dimensions of the 
eight sub-maps. 
Through the incorporation of SCDConv, the model proficiently processes feature mappings and 
mitigates the degradation of fine-grained information. The amalgamation of sub-maps and the 
adoption of stride-free convolution methodologies concurrently reduce spatial dimensionality 
while augmenting the model’s feature expression capabilities. 
3.2.2. EMMAattention 
Beyond merely mitigating feature information loss, fostering the interaction of longdistance 
feature information across diverse dimensions emerges as a pivotal strategy for enhancing 
network model detection capabilities. To facilitate the comprehensive interaction of dimension 
information and amplify feature representation, this paper introduces an improved module, 
termed the Efficient Multi-channel Multi-scale Attention (EMMA) module, building upon the 
Efficient Multi-scale Attention (EMA) module[9]. The EMMA module reconfigures partial 
channels into batch dimensions and partitions the channel dimension into multiple sub-
features, ensuring homogeneous distribution of spatial semantic features within each feature 
group. Initially, global information is encoded to derive channel weights for each parallel 
branch, followed by further amalgamation of feature information from two parallel branches 
through cross-dimensional interactions. Furthermore, the EMMA module applies grouping 
operations to each channel, thereby segmenting the feature space along the channel dimension. 
Illustrated in Fig. 5, the EMMA module incorporates ”X Avg Pool” and ”Y Avg Pool,” representing 
global pooling operations along the one-dimensional horizontal and vertical axes, respectively. 
Within this module, the input is segregated based on channel dimensions and processed 
through distinct branches. While one branch executes one-dimensional global pooling, the 
other employs 3x3 convolutions for feature extraction. Subsequently, the outputs from these 
branches undergo modulation via sigmoid functions and normalization operations. They are 
then merged through the cross-dimensional interaction module to capture pairwise 
relationships at the pixel level. Following final sigmoid modulation, the output feature maps 
either amplify or attenuate the original input features, culminating in the ultimate output. 
 

 
Fig. 5 EMMA 

 
The Efficient Multi-channel Multi-scale Attention (EMMA) module enhances feature 
representation through the restructuring of channel dimensions, utilization of cross-
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dimensional interactions to capture pixel-level relationships, and integration of global 
information within parallel branches to facilitate information exchange across various 
dimensions. This design significantly augments the model’s performance and expressive 
prowess. The EMMA module proficiently captures feature correlations and adjusts weights to 
enhance or diminish the contribution of different features, thereby yielding a more distinctive 
feature representation. 
3.2.3. Small Object Detection Head 
Given the small dimensions of object samples and the significant downsampling factor of the 
YOLOv8 model, its native version exhibits a compromised ability to detect small objects. This 
limitation arises from the difficulty of deeper feature maps in effectively capturing the features 
of such objects. In the original model, characterized by an input image size of 640×640 and a 
minimum detection resolution of 80×80, the receptive field of each grid measures 8×8. 
Consequently, if both the height and width of objects in the original image are less than 8 pixels, 
the original network faces challenges in discerning the object feature information within the 
grid. 
Consequently, this paper proposes a technique to enhance the detection performance of small 
objects by introducing an additional small object detection layer into the existing network 
architecture. This layer introduces a 160×160 scale for small object detection, incorporating an 
additional fusion feature layer and an extra detection head to augment the semantic 
information and feature representation capability of small objects. As depicted in Figure 2, the 
80×80 scale feature layer from the fifth layer of the Backbone network is integrated with the 
upsampling feature layer from the Neck network. Following the application of C2f and 
upsampling techniques, a profound semantic feature layer containing detailed small object 
features is produced. Subsequently, this deep semantic feature layer is merged with the shallow 
positional feature layer from the third layer of the Backbone network, supplementing and 
completing a fusion feature layer scaled at 160×160, aimed at expressing the semantic features 
and positional data of small objects. Finally, this fusion feature layer is directed into an 
additional detection head with a resolution of 160×160 via C2f. The 160×160 resolution 
facilitates the model in generating 4×4 scale grids, thereby improving the detection efficiency 
for objects in the original image with dimensions smaller than 8 pixels. 
The addition of the Head section allows the feature information of small objects to be 
transmitted through the network’s downsampling path to the feature layers of the other three 
scales, thereby enhancing the network’s feature fusion capability and improving the accuracy 
of small object detection. The introduction of additional detection heads serves to broaden the 
detection range for hazardous items. Consequently, the network can more accurately identify 
small-sized hazardous items in the image, thereby improving both detection accuracy and 
range. 

4. Experiment 

4.1. Experimental Environment and Data Sets 
The hardware setup utilized in the experiments features an Intel(R) Core(TM) i5-13400F CPU, 
16GB of RAM, and an RTX 3060 GPU with 12GB of VRAM. Operating on Windows 11, Python 
3.10, and PyTorch 2.1 deep learning framework, the computational processes are accelerated 
using CUDA 10.1. 
In this study, experiments were conducted utilizing the SIXray dataset, a collaboration between 
the Institute of Automation, Chinese Academy of Sciences, and the University of Science and 
Technology of China[14]. The dataset consists of 8,929 Xray images captured in real-world 
security inspection scenarios, divided into training, validation, and test sets in an 8:1:1 ratio. It 
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encompasses five categories of hazardous items: wrenches, handguns, knives, pliers, and 
scissors. The images portray objects with diverse poses, sizes, rotation angles, and levels of 
occlusion to simulate authentic security inspection scenarios. Detailed annotation information, 
including object categories, bounding box positions, and image-level labels, is provided within 
the SIXray dataset. 
During the experiment, the training regimen consisted of 300 epochs with a batch size of 16 
and an initial learning rate of 0.01. The resolution of input images was uniformly adjusted to 
640×640 for consistency. These parameters were chosen to fully exploit the dataset’s 
information and accommodate the network model’s input specifications. With this setup, we 
could precisely evaluate and compare the model’s performance on the SIXray dataset. 

4.2. Evaluation Index 
This paper assesses the algorithm using widely accepted metrics in object detection, such as 
Precision (P), Recall (R), mean Average Precision (mAP), and Average Precision (AP). These 
metrics are instrumental in evaluating the performance and efficacy of object detection 
algorithms. Precision and Recall offer insights into the accuracy and completeness of the 
detection outcomes, while mAP provides a comprehensive evaluation by considering Precision 
and Recall across different object categories. AP is employed to measure algorithmic 
performance across varying object categories. 
Precision and Recall are determined using Equations (1) and (2), respectively. True Positive 
(TP) signifies instances where the prediction is positive and accurately labeled as positive. False 
Positive (FP) denotes instances where the prediction is negative but incorrectly labeled as 
positive. True Negative (TN) represents instances where the prediction is positive and correctly 
labeled as negative. False Negative (FN) indicates instances where the prediction is negative 
but mistakenly labeled as positive. 
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The calculation equations for AP and mAP are outlined in Equations (3) and (4), respectively. 
Assuming there are n samples in a particular class of hazardous items, with m being positive 
samples, each positive sample corresponds to a Recall value R. To compute the AP for a specific 
class of hazardous items, the maximum Precision value P is determined for each Recall value, 
and the average of these m P values is obtained. If there are C classes of hazardous items in total, 
the average AP across these C classes is defined as mAP. Additionally, this paper evaluates the 
model’s size and inference speed using metrics such as the number of parameters (params), 
model size (size), and Frames Per Second (FPS) for inference speed. 
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4.3. Experimental Results and Analysis 
To validate the effectiveness of the proposed model in detecting hazardous items in X-ray 
security inspection images, this research conducted comparative experiments on the SIXray 
dataset with prominent object detection algorithms, including Faster R-CNN, Mask R-
CNN[5],SSD512,DETR[32], YOLOv3, YOLOv5s, and YOLOX. The experimental outcomes are 
summarized in Table 1.Compared to the baseline model YOLOv8n, the proposed model in this 
paper achieved improvements of 2.1% and 3.5% in mAP50 and mAP50-95, respectively. This 
suggests that SE-YOLO effectively enhances the model’s ability to focus on small-sized objects, 
resulting in enhanced detection accuracy for Gun, Knife, Wrench Pliers, and Scissors by 0.2%, 
3.3%, 2.7%, 1.3%, and 3.1%, respectively. Since the proposed model in this paper is based on 
YOLOv8n, it outperforms YOLOv5, YOLOv3, and YOLOX in terms of detection effectiveness. The 
mAP improvements over these algorithms are 6.4%, 8.4%, and 3.3%, respectively. Additionally, 
compared to other widely used object detection algorithms such as Faster R-CNN, SSD, and 
DETR, this paper’s model demonstrates notable advancements in both accuracy and inference 
speed. 
The comparative analysis between the proposed model and the baseline model in detecting 
security inspection images is illustrated in Figure 6. In security inspection images, there are 
numerous subtle edges caused by the overlapping and haphazard placement of hazardous 
items. As depicted in Figure 6, the original YOLOv8n model exhibits inadequate performance in 
detecting areas with overlapping and significant occlusion, often resulting in missed detections 
and false positives. However, the proposed model in this paper integrates fine-grained 
information extraction from SCDConv and the small object capture capability of the high-
resolution detection head, enabling effective detection of heavily occluded and overlapping 
objects. Additionally, the incorporation of EMMA attention in the neck network promotes 
multiscale information interaction, thereby improving the detection performance for 
hazardous items of various sizes. 
 

Table 1. Performance Comparison 

Model Gun (%) Knife ( % )  Wrench(%)  Pliers( % )  Scissors(%) mAP50 (%) mAP50-95 (%) 

FasterR-CNN 90.1 80.0 79.3 58.3 88.3 84.6 49.3 
SSD 88.6 72.1 63.4 76.8 82.7 76.7 45.8 
D ETR 86.6 69.2 65.1 64.3 82.4 77.3 46.3 
YOLOv3  89 7 81 2 78 9 62 1 84 8 83 9 49 0 
YOLOv5s 88.3 84.0 82.1 82.0 90.6 85.8 52.9 
Y OL OX 89.1 86.7 85.7 90.2 93.5 89.0 57.4 
YOLOv8n 98.4 86.3 88.2 93.9 84.0 90.2 65.9 
OURS 98.6 89.6 90.9 95.2 87.1 92.3 69.5 

 

 
Fig. 6 Compare results 
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4.4. Ablation Experiment 
To validate the effectiveness of the proposed enhancements by each module, ablation 
experiments were performed on the SIXray dataset to assess the influence of SCDConv, EMMA, 
and the high-resolution detection head. The results are tabulated in Table 2. 
The first row of Table 2 denotes the results obtained by the baseline model. The integration of 
the EMMA attention mechanism facilitated the interaction of multidimensional information in 
the feature space, resulting in an expanded receptive field and a 0.6% increase in mAP. The 
design of the high-resolution detection head enabled the model to detect hazardous items 
smaller than 8×8 pixels, leading to a 0.9% improvement in mAP. Furthermore, the introduction 
of SCDConv in the backbone network bolstered the model’s fine-grained feature extraction 
capability. The amalgamation of these enhancement modules enabled the model to effectively 
handle both large and small objects, achieving a comprehensive detection accuracy of 92.3%, 
which represents a 2.1% improvement over the baseline model. Thus, the model proposed in 
this study has demonstrated significant improvements across all aspects, achieving high 
detection accuracy. 
 

Table 2. Ablation experiment 
Model mAP50 (%) mAP50-95 (%) 

Baseline 90.2             65.9 
Baseline+ EMMA 90.8 66.3 

Baseline+ EMMA+ Head 91.1 66.6 
SE- YOLO 92.3 69.5 

5. Conclusion 

This study introduces a novel algorithm, SE-YOLO, for detecting hazardous items in security 
inspection images, with the aim of improving the accuracy of automatic hazardous item 
identification. The specific enhancements comprise three aspects: firstly, the incorporation of 
the SCDConv module, which effectively extracts fine-grained features from the images, thereby 
improving the model’s accuracy in identifying smallsized hazardous items. Secondly, the 
integration of the EMMA attention mechanism enhances the model’s feature fusion operation, 
facilitating effective multidimensional information interaction and augmenting the model’s 
perceptual capability in the feature space. Thirdly, a novel high-resolution small object 
detection head is devised, capable of generating anchor boxes better suited for small objects, 
thereby improving the model’s ability to capture small objects. Experimental validation on the 
SIXray dataset demonstrates that the proposed model achieves a detection accuracy of 92.3%. 
These findings indicate that the proposed enhancement algorithm holds potential in hazardous 
item detection tasks and offers valuable insights for practical applications. 
Nonetheless, this study identifies areas for improvement that demand further exploration and 
refinement. Although the model has demonstrated improved detection accuracy, there remains 
potential for optimizing its parameters and computational requirements. Potential avenues for 
enhancement include fine-tuning the network architecture, improving feature extraction 
methodologies, and implementing more efficient training strategies. 
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