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Abstract 
This paper considers a smart power infrastructure where multiple users share a 
common energy source. Each electricity meter is equipped with an energy consumption 
controller, and each user has an electricity meter. Electric meters are connected to 
various infrastructure and networks. This enables two-way communication between 
smart meters. Considering the importance of energy pricing as an important tool for 
formulating efficient demand-side management strategies, this paper proposes a new 
real-time pricing algorithm suitable for future smart grids, focusing on the interaction 
between smart meters and energy providers, including users through exchanges Control 
messages for energy consumption and real-time price information. First, users' 
preferences and their energy consumption patterns are analytically modeled in the form 
of carefully chosen utility functions based on microeconomic concepts. Second, this 
paper proposes a distributed algorithm that automatically manages the interaction 
between smart meters and energy providers’ ECC units. The algorithm calculates the 
lowest energy consumption level for each user and maximizes the total utility of all users. 
Finally, we show that through the proposed real-time pricing interaction, energy 
providers can encourage the development of some desirable consumption patterns 
among users. The simulation results of this paper confirm that the proposed distributed 
algorithm and particle swarm algorithm can benefit both users and energy providers. 
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1. Introduction 

Electricity is currently provided through an infrastructure consisting of utility companies, 
power plants, and transmission lines that serve millions of customers. For example, the U.S. 
power grid includes more than 3,100 power companies operating more than 10,000 power 
plants, and approximately 158,000 miles of high-voltage transmission lines bring energy to 
more than 131 million customers [1]. The dependence of almost all parts of the industrial sector, 
as well as the lives of our residents, on electrical energy makes this vast infrastructure a 
strategic entity. 
Given the increase in customer expectations, both in terms of quality and quantity [1] , energy 
resources are very limited, and developing and utilizing new resources is a long and expensive 
process. The reliability of the grid has been put at risk and new methods need to be developed. 
Improve grid efficiency. Currently, most buildings use electricity in an inefficient manner (e.g. 
due to poor thermal insulation), which results in a huge waste of natural resources. Additionally, 
the resulting demand for new types of electricity facilities, such as plug-in hybrid electric 
vehicles (PHEVs), may double average household loads, further increasing the need to develop 
new demand-side management (DSM) approaches. There is a wide range of DSM techniques, 
such as voluntary load management procedures [3][5] and direct load control [6]. However, 
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smart pricing is considered one of the most common tools that can encourage users to spend 
wisely and be more efficient. Due to the recent increase in energy prices, users are more willing 
to improve the insulation conditions of buildings or try to plan energy consumption for high-
load household appliances during off-peak hours. DSM is a tool that has been considered since 
the early 1980s [7]-[11]. Broad categories of load shaping objectives include peak shaving, load 
variation, valley filling, strategic protection, and flexible load shaping [7]. For example, peak 
shaving involves direct load control of utility customer equipment to reduce peak loads. Several 
pricing schemes have been proposed in the smart grid literature. Generally speaking, parity 
pricing, peak load pricing and adaptive pricing are one of the most popular pricing methods and 
have been widely used [12]-[15]. Parity pricing is a method by which utilities publish fixed 
prices for all periods. In power peak and valley load pricing, the predetermined cycle is divided 
into several time periods, and the price value of each time period is announced at the beginning 
of operation. In adaptive pricing, on the other hand, instead of announcing the predetermined 
price for each period of operation at the beginning of the day, the exact price value of each 
period is calculated in real time and announced only at the beginning of each period of 
operation. Obviously, in this approach, the realization of random events and user reactions to 
previous prices will affect prices during future runs [12]. 
According to a report by the U.S. Department of Energy [16], a smart grid is a power delivery 
system enhanced by communication facilities and information technology to improve customer 
service and clean the environment, making the grid operation more efficient and reliable. By 
utilizing the two-way communication capabilities of smart meters, it becomes possible to 
replace the current power system with a smarter infrastructure [17] . Based on this and 
considering the importance of demand-side management, this paper focuses on the real-time 
interaction between users and energy providers and proposes a new real-time pricing 
algorithm suitable for future smart grids. 

2. Model Establishment 

This article assumes a power system consisting of energy suppliers, power users and power 
regulators. Each user is equipped with an Energy Consumption Controller (ECC) unit. The role 
of ECC is to control power consumption and coordinate the relationship between each user and 
other users and energy suppliers. All ECC units are connected to each other and to energy 
suppliers through communication infrastructure such as local area networks. 
The expected time period of user operation is divided into time slots, where K K is Kthe set 
of all time slots. This division can be based on user behavior and their electricity demand 
patterns: peak load periods, off-peak load periods and normal load periods. Furthermore, let N
denote the set of all users, where N N , for each user i N , let denote k

ix the power consumed 
by the user iduring the time slot . k For each user i N and each time period k K , we define a 
power consumption interval k

iI : 
 

 ,k k k
i i iI m M                                                            (1) 

 

And the power consumption k
ix must be met k k k

i i im x M  . k
im and k

iM represent the user i 's 
minimum and maximum power consumption, respectively. The lowest power consumption 
level may represent the load of an appliance such as a refrigerator that always needs to be on 
during the day. The maximum power consumption level may also represent the total power 
consumption level of a household appliance assuming all appliances are turned on. 

The regulator ensures that energy suppliers will provide a minimum capacity to meet the m in
kL

minimum electricity demand of all users during each period. 
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min ,kk i

i N

L m k K


                                                       (2) 

 
The amount of electricity generated kL in each period is k K expressed in, and may differ 
between periods. We will also max

kL define as k K the maximum power generation in each period. 

2.1. User Preferences and Utility Functions 
Each user in the power system is an entity that can operate independently. The energy needs 
of each user may vary based on different parameters. For example, we can consider the time of 
day, climate conditions, and electricity prices. Energy requirements also depend on the type of 
user. For example, residential users may respond differently to the same price than industrial 
business users. Here, the utility function in economics is used to analyze and model the different 
responses of different users. In fact, the behavior of different users can be modeled by their 
different choices of utility functions. For all users, our utility function is expressed as  ,U x  , 
where x is the user's energy consumption level and  is a parameter that may vary between 
users and at different times of the day. For each user, the utility function represents the level of 
satisfaction achieved by the user as a function of its power consumption. We assume that the 
utility function satisfies the following properties: 
 

 
 ,

0
U x

x
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


                                                          (3) 
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Formulas (3) and (4) are marginal utility. 
User marginal utility is a non-increasing function, such as formula (5): 
 

 
 ,

0
U x
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                                                          (5) 

 
In general, the utility function is a concave function, and user satisfaction will gradually become 
saturated. Although the category of utility functions that satisfy equations (3) and (5) is very 
large, it is very convenient to have linear marginal benefits. 
We must be able to rank customers based on their utility. In the formula, we assume that for a 
fixed level of consumption x , the larger 
means large  ,U x  and can be expressed as: 
 

 
 ,

0
U x

x





                                                       (6) 

 
We assume there is no general expectation that power consumption will bring any benefit, so: 
 

  0, 0, 0U                                                          (7) 
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A selection of various utility functions is widely used in existing literature on communications 
and networking. However, recent reports indicate that the behavior of advanced users can also 
be accurately modeled by certain utility functions. 
 

  
2 0

2,
x x if x

U x

if x

 


 
 

    
 


                                              (8) 

 
where  is a predetermined parameter. 
Users who P x consume kW of electricity at a rate of P dollars/kWh within a specified number 
of hours are charged x USD per hour. Therefore, the welfare of each user can be simply 
expressed as: 
 

    , ,W x U x Px                                                        (9) 

 
where  ,W x  is the user's welfare function,  ,U x  is the user's utility function, P x is the cost 
imposed by the energy provider on the user, and x is the user's electricity consumption. For 
each published price value P, each user tries to adjust his or her power consumption x to 
maximize his or her welfare, which can be achieved by setting the derivative of equation (9) to 
zero, which means that at the optimal consumption level Below, the marginal revenue to the 
user will be equal to the published price. 

2.2. Energy Cost Model 
Let the expression of cost be  k kC L , which represents k K the cost of unit energy consumption 
provided by the energy provider in each time slot. kL We make the following assumptions: 

Assumption 1:The cost function increases in the energy capacity provided. That is, for each 
k K , therefore: 
 

 ,k k k k k kC L C L L L
           

   
                                               (10) 

 

Assumption 2:The cost function is a convex function. For k K , 0 1  , and , 0k kL L
 

 , 

therefore: 
 

    1 1k k k k k k kC L L C L C L   
                 

     
                                  (11) 

 
Piecewise linear function and quadratic function are two example cost functions that satisfy 
Assumption 1 and Assumption 2. In this article, we consider the quadratic cost function: 
 

   2
k k k k k k kC L a L b L c                                                         (12) 
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Among them 0ka  , , 0k kb c  , are all predetermined parameters. 

3. Problem Description and Analysis 

3.1. Problem Description 
In this section, we formulate the interaction between electricity users and energy suppliers as 
an optimization problem and analyze the existence and uniqueness of the solutions. In our 
model, energy suppliers publish electricity prices in real time based on total load demand. 
From the perspective of social equity, it is hoped to utilize the available capacity provided by 
energy suppliers in such a way that the total utility of users is maximized and the energy 
consumption of suppliers is minimized. However, each subscriber will choose its consumption 
level to maximize its welfare function introduced in (9). These individual optimal consumption 
levels may not be socially optimal for the general prices published by energy suppliers. In order 
to align these individual optimal consumption levels with the social optimal situation, we need 
to take as the objective function the sum of all utility functions minus the costs imposed on 
energy suppliers, while the consumption levels of all users are determined by the limited 
available generation capacity. Coupling. With centralized control over all subscribers and 
complete information about subscriber needs, effective energy consumption planning can be 
described as a solution to the following problems: 
 

   
min max, ,

,

max ,
k k
i i k k k

k k
i i k kk K i Nx I L L L

i N k K

imize U x C L
   

 

   

 . ,k
i ki N

st x L k K


                                                              (13) 

 

in  ,k k
i iU x  formula ( 8) , and the definition is  k kC L as shown in k

i formula ( 12) , which is the 
user's iparameter  in the period k . 
The problem proposed in (13) is a concave function maximization problem that can be solved 
in a central manner using convex programming techniques such as the interior point method 
(IPM). 

3.2. Problem Analysis 
We note that equation (13) can k K be solved independently for each time slot. In other words, 
for each fixed time slot k K , we have the following optimization problem: 
 

   
min max, ,

max ,
k k
i i k k k

k k
i i k ki Nx I i N L L L

imize U x C L
   

  

 . k
i ki N

st x L


                                                                    (14) 

 
Problem (14) is a convex problem and can be easily solved centrally. In practice, this problem 
must be solved in a distributed manner. Although the objective function in k

ix ( 14) is further 

separable in k
ix and , the variables kL and are coupled kL by the imposed constraint that the total 

consumed power cannot exceed the available capacity in (14). 
For the original problem (14), the Lagrangian is defined as: 
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where k is the Lagrange multiplier,  ,kix x i N  used for fixation k K . Due to the 

separability of the first term of Lagrangian, we can write the objective function of the dual 
optimization problem as: 
 

 
   

   
min max, ,

max imize , ,
k k
i i k k k

k k
k

x I i N L L L

k k k
i ki N

D x L

B S

  

 

   





 
                                     (16) 

 
In: 
 

    max ,
k k
i i

k k k k k k
i i i i

x I
B imizeU x x  


                                      (17) 

 

     
min max

max
k k k

k k
k k k k

L L L
S imize L C L 

 
                                      (18) 

 
Double question: 
 

  
0

min imize
k

kD





                                                           (19) 

 

in equation (16)  kD  can be decomposed into N separable sub-problems of the form (17), 
which can be solved by the user, and the other sub-problem is of the form (18), which can be 
solved by the user for the energy supplier. 
We can show that the strong duality holds, and we can solve the dual problem (19) instead of 
the primal problem (14). In this case, we can obtain *k a solution to the dual problem, and each 
individual user and energy supplier can simply solve their own local optimization problem 
determined by (17) and (18), obtaining and *k

ix respectively *
kL . 

(17) with (9) that each individual user has to solve, and introduce the welfare of each user, we 
can understand the key idea that led us to propose a real-time pricing algorithm. In fact, if the 
energy supplier is able to *kP  charge users at a rate of, and each user tries to maximize his 
own welfare function, then strong duality will guarantee that the total power consumption does 
not exceed the provided capacity. 

4. Distributed Algorithms and Heuristic Algorithms 

4.1. Distributed Algorithm 
We explained in the previous section that by charging the user for *k the solution to the dual 
problem, we can implement the solution to the original problem (14). The dual problem can be 
solved iteratively using gradient projection methods, in which case we have: 
 



Scientific Journal of Intelligent Systems Research                                                                                        Volume 6 Issue 3, 2024 

ISSN: 2664-9640                

36 

 

 

    

1

* *

k
tk k

t t k

k k k k
t i t k ti N

D

x L


  



   







 
   

  

    
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where t T is T the set of time instances updated by the energy supplier. k Here,  *k k

i tx  are the 
local optimizers of  * k

k tL  (17) and are the local optimizers of the given k
t (18), respectively. 

Additionally, k
t is t T the value in the instance and k is the step size. The interaction between 

energy providers and users is shown in Figure 1. 
 

 

Figure 1. Illustration of the operation of the proposed algorithm and theinteractions between 
the energy provider and subscribers in the system. 

 
The distributed algorithms for each user and energy provider are summarized in Algorithms 1 
and 2 respectively. Consider Algorithm 1. In line 1, each subscriber starts with its initial 
conditions, assumed to be random. Then, the loop on lines 2 to 6 describes each subscriber's k

response to the newly announced price. In this loop, each subscriber receives the new value at 
line k 3 and solves the local problem (17) to obtain the new value corresponding to line 4. k

value of optimal consumption  *k k
i tx  . On line 5, the user  *k k

i tx  communicates the new value of to 
the energy provider. We note that in each epoch k K , users only apply their new loads after 
the algorithm has converged. 
 

Algorithm1: Executed by each subscriber i N . 
1:Initialization 
2: for each t T  
3: Receive the new value of k from energy provider. 
4: Update the consumption value  *k k

i tx  by solving(17). 
5: Communicate the updated  *k k

i tx  to energy provider. 
6: edn for 
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In Algorithm 2 , the energy provider starts with random initial conditions in line 1 . The loop in 
lines 2 to 11 continues during the system's run cycle. In this loop, the energy provider is 
updated in each t T instance in lines k 4 and 5 . It further calculates  * k

k tL  a new value that 
maximizes its welfare and updates its information about the total consumption level of the 
system from 7 to 9. 
 

Algorithm2: Executed by the energy provider. 
1:Initialization. 
2:repeat. 
3: if time t T . 
4: Compute the new value of k using (20). 
5: Broadcast the new value of k to all the subscribers. 
6: else. 
7: Update the capacity value  *k k

i tx  by solving(18). 
8: Receive  *k k

i tx  from all the subscribers i N . 
9: Update the total load  *k k

ii N
x 

 accordingly. 

10: end 
11: until end of intended period. 

 
We note that network utility maximization has been successfully applied to computer networks. 
The problem formulation in this section is similar to the congestion control problem in the 
Internet. However, the pricing algorithm in this paper differs from the Internet rate allocation 
problem in two aspects: ( a ) the capacity can be adjusted by the energy provider and may 
change periodically with a fixed capacity constraint; (b) we Consider the energy costs imposed 
on energy suppliers and formulate the problem as utility maximization and cost minimization. 

4.2. Heuristic Algorithm-Particle Swarm Optimization 
Particle Swarm Optimization (PSO) treats each individual as a particle in a three-dimensional 
space and gives it a certain initial velocity to fly randomly. The particles will change with 
reference to the optimization results of other particles, thereby continuously seeking 
optimization. Even so, the PSO algorithm gradually moves individuals to better areas based on 
each particle's adaptability to the environment, and finally searches and finds the optimal 
solution to the problem. 
In the PSO algorithm, particles represent potential solutions to the problem and also represent 
a fitness value. Suppose there are Dparticles forming a group in a tone-dimensional search. 
The position 𝑚  of space.The position of m the particle at the first iteration i is expressed as 

        1 2, , ,i i i iDX t x t x t x t  and the corresponding flight speed is expressed as. When 
        1 2, , ,i i i iDV t v t v t v t  starting to execute the PSO algorithm, first initialize mthe position and 

speed of the particles, and then Optimization through iterative calculation: There are two 
extreme values in the algorithm during the calculation process. One extreme value is the 
optimal solution searched so far by the particle itself, which is called the local optimal value, 
expressed as; the other         1 2, , ,i i i iDP t p t p t p t  extreme value is the entire particle The 
optimal solution found so far by the group is called the global optimal value and is expressed as 

        1 2, , ,g g g gDP t p t p t p t  . 

Specifically, during 1t  the iterative calculation, the particles iwill be updated according to the 
following formula: 
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          
      
1

2

1 1 0,1

2 0,1
ik ik ik ik

gk ik

v t v t c rand p t x t

c rand p t x t

     
    (twenty one) 

   1 1ik ik ikx t x v t     (twenty two) 

 

where  is the inertia weight; 1c , 2c are two learning factors;  1 0,1rand and  2 0,1rand are two 
random numbers evenly distributed between (0,1); 1, 2,i m  ; 1, 2 ,k d  . In addition, the 
speed of the particle in each dimension iV is limited by a maximum speed m a xV . If the current 
acceleration of the particle causes its speed in a certain dimension to exceed the maximum 
speed maxV , the speed in that dimension is limited to the maximum speed. The third part of 
equation (21) indicates that particles will communicate with each other. 

5. Result Analysis 

In this section, we present simulation results and evaluate the performance of our proposed 
distributed algorithm and solution using particle swarm optimization. In the simulation model, 
we assume an 10N  energy user. The entire cycle is divided into 24 equal parts, representing 
one rotation of the earth. The minimum and maximum power requirements of all users are 
different in each time slot, ensuring the minimum power generation that meets the minimum 
power requirements. However, we also assume that the maximum generation max

kL equals the 
maximum total power demand of all users, so we have 

max k
k ii N
L M


 , for all k K . 

We also assume that the parameters of each user are randomly selected from the interval [1, 
4] and remain fixed throughout the period. The parameter of the utility function introduced in 
 equation (8) has a value of 0.5. We set the parameter of the cost function introduced in (12) 

0.01ka  to, 0kb  . 0kc   
The simulation results of total power consumption solved by distributed algorithm and particle 
swarm algorithm are shown in Figures 2 and 3. Due to the real-time interaction between users 
and energy suppliers, the total electricity consumption corresponding to the two curves 
matches the expected power generation capacity of users and energy suppliers. High utilization 
of available resources while keeping the total power consumption below the required threshold 
is one of the advantages of the proposed algorithm. As expected, both generation and total 
power consumption are within the minimum and maximum total power requirements of all 
users within each time slot. 
 

 
Figure 2. Total power consumption calculated by distributed algorithm 
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Figure 3. Total power consumption calculated by particle swarm algorithm 

 
For comparison with the proposed real-time pricing strategy, we also consider a fixed pricing 
scheme with hard constraints to keep total consumption below generation without user 
interaction. In a fixed pricing algorithm, the energy supplier announces k K the price for each 
time slot at the beginning of the time slot to ensure that  the total consumption level does not 
exceed the generation capacity for any type of user with different choices of parameters. 
Therefore, in the fixed pricing algorithm,  the worst case scenario in which the parameters of 
all users takes the maximum value is considered. max 4  Therefore, k K the price per time 
slot can be calculated as: 
 

 max

k
k
fixed

L
P

N

                                                        (21) 

 
Using distributed algorithm and particle swarm algorithm to solve, the simulation results of the 
total utility of all users for the two different methods are shown in Figures 4 and 5. We can see 
that the total utility of our proposed distributed real-time pricing algorithm is much higher than 
that of the fixed pricing algorithm. 
 

 

Figure 4. Total consumed power particles swarm optimization is used 
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Figure 5. Total consumed power particles swarm optimization is used 

6. Conclusion 

In this paper, an optimal real-time pricing algorithm for DSM in future smart grids is proposed. 
The proposed algorithm is based on utility maximization, which can be implemented in a 
distributed manner to maximize the total utility for users and minimize the loss cost for 
suppliers while keeping total power consumption lower than generation. In addition, the P SO 
algorithm is also used for solution. Simulation results confirm that by using our proposed 
optimization-based real-time pricing model, not only energy providers but also users will 
benefit. 

References 

[1] LH Tsoukalas and R. Gao, “From smart grids to an energy internet: Assumptions, architectures, and 
requirements,” in Proc. of Third Int ' l Conf. on Electric Utility Deregulation and Restructuring and 
Power Technologies, Nanjing, China, Apr. 2008. 

[2] US Department of Energy, The 2008 Buildings Energy Data Book. Energy Efficiency and Renewable 
Energy, Mar. 2009. 

[3] M. Fahrioglu, M. Fern, and F. Alvarado, “Designing cost effective demand management contracts 
using game theory,” in Proc. of IEEE Power Eng. Soc. 1999 Winter Meeting, New York, NY, Jan. 1999. 

[4] M. Fahrioglu and F. Alvarado, “Using utility information to calibrate customer demand management 
behavior models,” IEEE Trans. on Power Systems, 2007, Vol. 16 (12), p317-322. 

[5] R. Faranda, A. Pievatolo, and E. Tironi, “Load shedding: A new proposal,” IEEE Trans. on Power 
Systems, 2007, Vol. 22 (4), p2086-2093. 

[6] N. Ruiz, I. Cobelo, and J. Oyarzabal, “A direct load control model for virtual power plant management,” 
IEEE Trans. on Power Systems, 2009, Vol. 24 (2), p959-966. 

[7] C. Gellings, “The concept of demand-side management for electric utilities,” Proceedings of the IEEE, 
1985, Vol. 73 (10), p1468-1470. 

[8] M. Fahrioglu and F. Alvarado, “Designing incentive compatible contracts for effective demand 
management,” IEEE Trans. on Power Systems, 2000, Vol. 15 (4), p1255-1260. 

[9] B. Ramanathan and V. Vittal, “A framework for evaluation of advanced direct load control with 
minimum disruption,” IEEE Trans. on Power Systems,2008, Vol. 23 (4), p1681-1688. 

[10] AH Mohsenian-Rad, VWS Wong, J. Jatskevich, and R. Schober, “Optimal and autonomous incentive-
based energy consumption scheduling algorithm for smart grid,” in Proc. of IEEE PES Conf. on 
Innovative Smart Grid Technologies, Gaithersburg, MD, Jan. 2010. 

[11] AH Mohsenian-Rad and A. Leon-Garcia, “Optimal residential load control with price prediction in 
real-time electricity pricing environments,” IEEE Trans. on Smart Grid,2010, Vol. 1 (2), p120-133. 



Scientific Journal of Intelligent Systems Research                                                                                        Volume 6 Issue 3, 2024 

ISSN: 2664-9640                

41 

[12] P. Luh, Y. Ho, and R. Muralidharan, “Load adaptive pricing: An emerging tool for electric utilities,” 
IEEE Trans. on Automatic Control,1982, Vol. 27 (2), p320–329. 

[13] [13] Y. Tang, H. Song, F. Hu, and Y. Zou, “Investigation on TOU pricing principles,” in Proc. of IEEE 
PES Transmission and Distribution Conf. Exhibition: Asia and Pacific, Dalian, China, Aug. 2005. 

[14] M. Crew, C. Fernando, and P. Kleindorfer, “The theory of peak-load pricing: A survey,” Journal of 
Regulatory Economics,1995, Vol. 8 (3), p215–248. 

[15] S. Zeng, J. Li, and Y. Ren, “Research of time-of-use electricity pricing models in China: A survey,” in 
Proc. of IEEE Int'l. Conf. on Industrial Engineering and Engineering Management, Singapore, Dec. 
2008. 

[16] US Department of Energy, The Smart Grid: An Introduction, 2009. 
[17] A. Vojdani, “Smart integration,” IEEE Power and Energy Magazine,2008, Vol. 6 (6), pp. 72–79, Nov. 

2008. 

 


