
Scientific Journal of Intelligent Systems Research Volume 6 Issue 3, 2024

ISSN: 2664-9640

16

An Approach to Estimating the Number of Defects from Lines of
Code, with Censored Poisson and Binomial Models

Xiaopeng Xu1, Xiaochun Zhang1, *, and Chen Li2
1 School of Management Science and Engineering, Anhui University of Finance and Economics,

Bengbu, Anhui, China
2 Department of Materials and Production, Aalborg University, Aalborg, Denmark

*Corresponding Author

Abstract
Software defect prediction plays a vital role in ensuring software quality and optimizing
resource allocation in development projects. However, the defect density, measured as
defects per thousand lines of code (KLOC), is often not directly observable. Instead,
software development teams typically record the presence of defects as a Boolean value,
indicating whether a module has one or more reported defects. This paper proposes a
novel method to estimate the number of defects in a software project using probability
models and censoring techniques, based on the available lines of code (LOC) and defect
presence data. We investigated Poisson and Binomial models, implemented with
different tools such as JAGS and Metropolis, and obtained consistent results across the
models. The experimental results show the proposed approach can provide valuable
insights for project managers, enabling them to allocate resources effectively and
prioritize quality assurance activities, ultimately leading to improved software
reliability and customer satisfaction.

Keywords
Software Defect Estimation; Poisson; Binormal; Promise.

1. Introduction

In the realm of software development, defect prediction is a critical task that directly impacts
project success, resource allocation, and product quality. Traditionally, recording detailed
defect information for each software module can be a time-consuming and labor-intensive
process. As a result, many software development teams opt to simplify data collection by
recording only the presence of defects, represented as a Boolean value indicating whether a
module has one or more reported defects. While this approach streamlines data collection, it
poses challenges for accurate defect prediction due to the inherent diversity in module
attributes, such as lines of code (LOC).
Existing defect prediction techniques often rely on classification algorithms based on machine
learning, which aim to categorize modules as defective or non-defective. However, these
algorithms may not provide quantitative measures like defects per thousand lines of code
(KLOC), which are crucial for effective project management and quality assurance. Moreover,
the imbalanced nature of defect datasets, where the majority of modules are non-defective, can
hinder the performance of classification algorithms.
To address these challenges, we propose a novel method that estimates the number of defects
in a software project using probability models and censoring techniques. By treating the
number of defects as a latent variable following a probability distribution, we establish a
relationship between the observed Boolean value (i.e., the presence of defects) and the

Scientific Journal of Intelligent Systems Research Volume 6 Issue 3, 2024

ISSN: 2664-9640

17

underlying defect count using censoring. This approach enables the estimation of defect density
and the prediction of defects in untested code, providing valuable insights for project managers
and quality assurance teams.The proposed method offers several advantages over existing
defect prediction techniques. First, it allows for the estimation of quantitative measures like
defects per KLOC, which are more informative than binary classifications. Second, the method
can handle the imbalanced nature of defect datasets by leveraging probability distributions and
censoring. Finally, the approach is flexible and can be implemented using various tools and
algorithms, ensuring its adaptability to different software development environments.
In this paper, we present the theoretical foundation of the proposed method and demonstrate
its application in a real-world software development scenario. We investigate Poisson and
Binomial models for defect estimation and compare their performance using different
implementation tools. The results highlight the consistency and effectiveness of the proposed
approach in predicting defect density and estimating the total number of defects in a project.
The remainder of the paper is organized as follows: Section 2 provides an overview of related
work in software defect prediction. Section 3 describes the proposed method, including the
probability models and censoring techniques used. Section 4 presents the experimental setup
and results, discussing the findings and their implications for software development projects.
Finally, Section 5 concludes the paper and outlines future research directions.

2. Related Work

To improve software quality and reliability, many software defect prediction models had been
emerged for the past decades [1-5]. However, the appropriate method that ensures the high
quality of software production still remains an open question. The existing works can be
divided into two parts: machine learning based and deep learning based.
Peng et al. combine various measures to evaluate the quality of classifiers for software defect
prediction. The experiment used 13 classifiers on 11 software defect datasets, and the results
indicate that SVM, C4.5 and KNN were the top algorithms [6]. Pendharkar et al. selected the
appropriate inputs and learned a classification. The proposed hybrid exhaustive searchs and
probabilistic neural networks worked well for the small scale datasets [7]. Tumar et al. develop
an adaptive synthetic sampling approach based on binary moth flame optimization. For the
PROMISE dataset, the proposed technique increases the prediction performance for various
classifiers. The KNN algorithm wins the best runtime and the linear discriminant analysis gets
the highest auc value [8]. Aquil et al. put forward a stacking classifier technique to build an
efficient software defect prediction model. In the evaluation stage, 13 datasets were used to test
different prediction methods, and had the best results of all the methods compared [9].
Turabieh et al. developed a classifier to address the software defect prediction problem. The
work used 19 software defect datasets for evaluating the proposed method, and achieved a high
accuracy performance [10].
Most early software defect prediction researches based on machine learning were involved in
buggy and non-buggy, i.e. the binary classification problem. However, the information is useful
but not enough. In addition, Features selection also a challenge for machine learning. Liang et
al. introduced a Seml framework, which combines word embedding and LSTM model for
software defect prediction. The results of the experiments show Seml outperforms three
compared approaches on most of the datasets [11]. Phan et al. proposed a multi-view CNN
based on labeled directed graphs. In order to adapt to dynamic structures for local regions of
graphs, convolutional filters were designed for the model. The results show that the proposed
model outperforms compared deep neural networks for malware analysis and software defect
prediction task[12]. Song et al. identified the critical software defects based on neural networks
algorithms. The work is an improved Elman neural network for software defect prediction. The

Scientific Journal of Intelligent Systems Research Volume 6 Issue 3, 2024

ISSN: 2664-9640

18

authors evaluated the proposed model on 7 PROMISE repositories projects. The results suggest
that the improved Elman neural network model is prominent [13]. In [14], the authors present
a combined approach for software defect prediction. The proposed neural network model with
PCA feature reduction scheme improved the prediction performance. The experiments were
implemented on NASA dataset. The results show that the proposed approach can provide better
performance for software defect prediction. In [15], authors introduced a novel deep learning
framework to predict the number of defects. In which, a module consisted of a set of software
metrics, and predicted the amount of defects. The results illustrated that the proposed
approach can improve software defect prediction performance.
The aforementioned literatures highlight two significant challenges: (1) estimating the number
of defects if only the presence of defects is known; (2) evaluating the quality of parameter
estimations. To overcome the above issues, we propose an estimation approach for software
defects.

3. Methods

Without loss of generality, any datum of Promise dataset can be used as benchmark of this
research, and CM1 is adopted here. It provides much information, such as "lines of code" (LOC),
"complexity", or "module has/has not one or more reported defects" (i.e. the presence of
defects). For the sake of simplicity, we investigate only LOC and the presence of defects, with
which to estimate the number of defects.
First, the distribution of LOC is studied. Second, several models of defect density are proposed.
With this information, the number of defects can be estimated.

3.1. Lines of Code
Lines of code are elementary information of any module. As shown in Figure 1, in CM1, there
are 498 modules, from which only three have more than 350 lines, while most modules have
fewer than 200 lines. Our first question will be: what is the distribution of LOC?
We have two options:
 Poisson Distribution
 Gamma Distribution

Figure1. Histogram of LOC

Poisson distribution (with parameter λ) seems appropriate for LOC, which is an integer.

 Xi ~ Poisson(λ) (1)

Scientific Journal of Intelligent Systems Research Volume 6 Issue 3, 2024

ISSN: 2664-9640

19

For a full Bayesian model, a distribution for λ is also defined, such as uniform over the positive
real numbers:

 λ ~ U(0,∞) (2)

Being an integer, LOC can instead be treated as positive real number following Gamma
distribution.

Xi ~ Gamma(α, β) (3)

α and β follow uniform distribution:

 α, β ~ U(0,∞) (4)

3.2. Defect Density
Imbalance is a noticeable property of the data because most modules (90%) of CM1 are labeled
with no defect. In other words, 90% of correctness can be assured by assuming no defect in the
binary classification. Therefore, classification accuracy may be not a feasible measure for
imbalanced datasets.

Figure 2. Histogram of LOC for defective and defectless modules

Knowing defective or not, as well as lines of code, we are actually interested in the number of
defects. There is a relationship between the former and latter: defective implies that the
number of defects is an unknown integer that is greater than one, and no defect means the
number of defects is zero. The relationship is called censoring in the fields of reliability and
survival analysis. With censoring, the number of defects can be inferred from the presence of
defects.
As the number of defects is unknown, evaluating the fit of the model may be inappropriate. Our
scheme is to assume Poisson or Binomial distribution for the number of defects, and to compare
the two results.
 Poisson without intercept
The defect per line of code (defect density) is modeled with θ, which is shared by all modules.
If the line of code of ith module is Xi, then the number of defects of ith module follows Poisson

Scientific Journal of Intelligent Systems Research Volume 6 Issue 3, 2024

ISSN: 2664-9640

20

distribution with parameter θXi. Also, if the lines of code Xi is zero, the number of defects will
also be zero, i.e. having not intercepted.

 Yi ~ Poisson(θXi) (5)

The number of defects Yi is an unobservable latent variable, and after censoring, Zi is observed.
If Yi is zero, Zi will also be zero, otherwise, one.
 Poisson with intercept
Other factors, in addition to the lines of code, such as interface complexity, may also affect the
number of defects. These factors can be modeled with an intercept c.

 Yi ~ Poisson(θXi + c) (6)

If the lines of code is zero, the number of defects can be nonzero. Intercept can measure the
contribution of other factors to the number of defects.
 Binomial Distribution
Binomial distribution can also model the number of defects. If there is Xi lines of code in the ith
module, and the defective rate per line is θ, then the number of defects follows Binomial
distribution.

 Yi ~ Binomial(θ, Xi) (7)

The Binomial distribution can be approximated by Poisson distribution, if Xi is large and θ is
small. In CM1 data, the median of Xi, which is only 17, may be not large enough. Therefore, we
will compare the results of the two models. Freeing from the above approximation condition,
binomial distribution has the limitation of omitting intercept.

4. Experiment

Two MCMC algorithms are used to estimate the parameters of probability models: 1) Gibbs
Sampling and 2) Metropolis.
MHMC is used for Binomial model, while JAGS for other models. The ability of coping with
censored data is a benefit of MCMC. All experiments adopt the same configuration:
 3 chains
 5000 iterations per chain
 5000 burn-in

4.1. Lines of Code
As shown in Table 1, the λ parameter of Poisson distribution, which is the average lines of code,
is about 30. The 3rd step of Bayesian analysis is to evaluating the fit of the model. As shown in
Figure 3 of the quantile-quantile plots, the disparate between theoretical and empirical
distributions is obvious. It suggests that the LOC does not follow Poisson distribution. For
Poisson, the mean and variance should be equal, but in this case, the mean of LOC is about 30
and the variance is much larger than 30.

Scientific Journal of Intelligent Systems Research Volume 6 Issue 3, 2024

ISSN: 2664-9640

21

Figure 3. Quartile-quartile plots for Poisson model

Table 1. Parameter estimates for Gamma distribution

Parameter Mean SD Time-series SE
λ 29.646482 0.243528 0.002498

Experimented with similar configuration for Gamma distribution, the shape parameter is about
1.080, and rate 0.036. The quantile-quantile plots (Figure 4) show that theoretical and
empirical distributions are more comparable than their Poisson counterpart.

Figure 4. Quartile-quartile plots for Gamma model

4.2. The Number of Defects
Since LOC is observed, the estimated parameters of Gamma distribution, α and β, are similar to
Table 1. In Table 2, the average defects per KLOC (thousands of lines of code), which is θ, is
about 3 for CM1.
Above experiments are modeled with BUGS language, implemented with JAGS. The same
models can also be transformed to potential energy and implemented using Metropolis
algorithm. The advantage is flexibility.

Scientific Journal of Intelligent Systems Research Volume 6 Issue 3, 2024

ISSN: 2664-9640

22

Table 2. Poisson model without intercept
Parameter Mean SD Time-series SE

α 1.079870 0.060870 1.337e-03
β 0.036508 0.002606 5.792e-05
θ 0.003394 0.000484 3.937e-06

Assuming the number of defects follows Binomial distribution with parameters θ and LOC, from
Table 3, we find that the estimated α and β are similar to those in Table 1 and Table 2. The fact
indicates that the results of different algorithms are consistent. The estimated θ is matched with
Table 2, therefore, two different models can draw comparable results, that is, 3 defects per
KLOC.

Table 3. Binomial model
Parameter Mean SD

α 1.07555 0.0609205
β 0.0362623 0.00256943
θ 0.00371736 0.000541352

In addition to LOC, other factors, such as interface complexity, may also contribute to the
number of defects. The influence is modeled with the intercept, which signifies average number
of defects for modules with zero line. As shown in Table 4, with intercept, the number of defects
per KLOC drops to 2. As the estimated c is about 10 times to θ, the defects introduced by other
factors are close to the effect of 10 LOC. As the median of LOC is only 17, other factors have
notable influence on the number of defects.

Table 4. Poisson model with intercept
Parameter Mean SD Time-series SE

α 1.079792 0.0598676 1.285e-03

β 0.036482 0.0025294 5.411e-05

c 0.023280 0.0137021 2.070e-04

θ 0.002676 0.0005887 7.591e-06

5. Discussion

This research investigates three models for the number of defects:
 Poisson without intercept
 Poisson with intercept
 Binomial
The tools are based on two algorithms:
 Gibbs
 Metropolis
For the distribution of LOC, Gamma fits better than Poisson.The fact that two algorithms arrive
similar estimates for parameters of Gamma distribution α and β testifies the implementation of
Metropolis algorithm. In all three models, the estimated parameters of Gamma distribution are
similar. Because the LOC is actually observed, the modelling of number of defects and LOC is
uncorrelated.
Both Binomial and Poisson models obtain 3 defects per KLOC, which may reflect the true rate.
Only CM1 of Promise dataset is used; other datasets may have different results.The intercept is

Scientific Journal of Intelligent Systems Research Volume 6 Issue 3, 2024

ISSN: 2664-9640

23

10 times to the number of defects per LOC. Therefore, other factors than LOC can influence the
number of defects. The specific contributing factors in Promise dataset are to be identified.
The experimental results demonstrate the effectiveness of the proposed method in estimating
the number of defects using LOC and defect presence data. By investigating Poisson and
Binomial models with different implementation tools, such as JAGS and Metropolis, we
observed consistent results across the models. Both the Poisson and Binomial models yielded
similar estimates for defect density, with the CM1 dataset showing approximately 3 defects per
KLOC.
The inclusion of an intercept term in the Poisson model provided valuable insights into the
influence of factors beyond LOC on the number of defects. The estimated intercept coefficient
suggested that factors like interface complexity can have a significant impact on defect
occurrence, with their contribution being comparable to the effect of 10 LOC. This finding
underscores the importance of considering additional factors in defect prediction models to
improve their accuracy and reliability.
While the proposed method has been applied to the CM1 dataset from the Promise repository,
it is essential to assess its generalizability by evaluating its performance on other datasets.
Future research should focus on validating the method across diverse software projects and
domains to ensure its robustness and applicability in various contexts. Moreover, identifying
and incorporating specific contributing factors from the Promise dataset, such as complexity
measures or developer experience, could further enhance the predictive power of the models.
The proposed method offers several practical implications for software development projects.
By providing quantitative estimates of defect density and the total number of defects, project
managers can make informed decisions regarding resource allocation and quality assurance
strategies. The ability to predict defects in untested code allows for proactive measures to be
taken, such as targeted testing or code reviews, ultimately reducing the risk of defect spillover
into later stages of the development lifecycle.
Furthermore, the proposed method can be integrated into existing software development
processes and tools, enabling seamless defect prediction and monitoring. The consistency of
results across different implementation tools demonstrates the flexibility of the approach,
allowing development teams to choose the most suitable tools based on their specific
requirements and expertise. However, it is important to acknowledge the limitations of the
proposed method. The accuracy of defect predictions relies on the quality and
representativeness of the input data, including LOC and defect presence information. Ensuring
the reliability and consistency of data collection processes is crucial for obtaining meaningful
results. Additionally, the method assumes that the relationship between LOC and the number
of defects follows specific probability distributions, which may not hold true in all software
projects.

6. Conclusion

In this paper, we proposed a novel method for estimating the number of software defects using
probability models and censoring techniques, based on LOC and defect presence data. The
method addresses the challenges associated with traditional defect prediction approaches,
which often rely on binary classification and may not provide quantitative measures of defect
density.
The experiment results show its effectiveness in predicting defect density and estimating the
total number of defects in a project. The consistency of results across Poisson and Binomial
models, implemented with different tools, highlights the robustness and reliability of the
approach. Moreover, the proposed method contributes to the growing body of knowledge in
software defect prediction research. The integration of probability models and censoring

Scientific Journal of Intelligent Systems Research Volume 6 Issue 3, 2024

ISSN: 2664-9640

24

techniques offers a fresh perspective on defect estimation, opening up new avenues for further
exploration and refinement.
As the demand for high-quality software continues to grow, the adoption of such data-driven
defect prediction techniques will become increasingly crucial for the success of software
development projects. Future research should focus on validating the method across diverse
datasets, incorporating additional contributing factors, and exploring alternative probability
models to capture the complexity of software defects.

Acknowledgments

The authors would like to acknowledge partial support by the project of the Natural Science
Foundation of the Education Department of Anhui Province (Grant No. KJ2020A0012). This
study is also partially supported by EU-funded AI REDGIO 5.0 project (Grant Agreement ID:
101092069).

References

[1] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, A systematic literature review on fault
prediction performance in software engineering, IEEE Transactions on Software Engineering, vol.
38(2012)No.6, p.1276–1304.

[2] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G.Q. Zhang, Transfer learning using computational
intelligence, Knowledge-Based Systems, vol. 80(2015)No. C, p.14–23.

[3] T. J. Wang, Z.W. Zhang, X. Y. Jing, and L.Q. Zhang, Multiple kernel ensemble learning for software
defect prediction, Autom Softw Eng, vol.23(2016), p.569–590.

[4] X. Chen, D. Zhang, Y.Q. Zhao, Z.Q. Cui, C. Ni, Software defect number prediction: unsupervised vs
supervised methods, Information and Software Technology, vol. 106(2019), p.161–181.

[5] Z. Xu, J. Liu, etc., Software defect prediction based on kernel PCA and weighted extreme learning
machine, Information and Software Technology, vol.106(2019), p.182–200.

[6] Y. Peng, Gang. K, G.X. Wang, and H.G. Wang, Empirical evaluation of classifiers for software risk
management, International Journal of Information Technology & Decision Making, (3009),p.749–
767.

[7] Pendharkar PC, Exhaustive and heuristic search approaches for learning a software defect
prediction model, Eng Appl Artif Intell, vol. 23(2010)no. 1, p.34–40.

[8] I. Tumar, Y. Hassouneh, H. Turabieh, and T. Thaher, Enhanced binary moth flame optimization as a
feature selection algorithm to predict software fault prediction, IEEE Access, vol.8(2020), p.8041–
8055.

[9] M.A.I. Aquil, Predicting software defects using machine learning techniques, International Journal
of Advanced Trends in Computer Science and Engineering, vol.9(2020)no.4, p. 6609–6616.

[10] Turabieh H, Mafarja M, and Li X, Iterated feature selection algorithms with layered recurrent neural
network for software fault prediction, Expert Syst Appl, vol. 122(2019), p.27–42.

[11] H. Liang, Y. Yu, L. Jiang, and Z. Xie, Seml: A semantic LSTM model for software defect prediction,
IEEE Access, vol. 7(2019), p.83812–83824.

[12] A.V. Phan, M.L. Nguyen, Y.L. H. Nguyen, and L.T. Bui, DGCNN: A convolutional neural network over
large-scale labeled graphs, Neural Networks, vol. 108(2018), p.533–543.

[13] K. Song, S.K. Lv, D. Hu, and P. He, Software defect prediction based on elman neural network and
cuckoo search algorithm, Mathematical Problems in Engineering, (2021), p.1-14.

[14] R. Jayanthi, L. Florence, Software defect prediction techniques using metrics based on neural
network classifier, Cluster Comput, vol. 22(2019) no.1, p. 77–88.

[15] L. Qiao, X.S. Li, Q. Umer, and P. Guo, Deep learning based software defect prediction,
Neurocomputing, vol. 385(2020), p.100–110.

