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Abstract 
Software defect prediction plays a vital role in ensuring software quality and optimizing 
resource allocation in development projects. However, the defect density, measured as 
defects per thousand lines of code (KLOC), is often not directly observable. Instead, 
software development teams typically record the presence of defects as a Boolean value, 
indicating whether a module has one or more reported defects. This paper proposes a 
novel method to estimate the number of defects in a software project using probability 
models and censoring techniques, based on the available lines of code (LOC) and defect 
presence data. We investigated Poisson and Binomial models, implemented with 
different tools such as JAGS and Metropolis, and obtained consistent results across the 
models. The experimental results show the proposed approach can provide valuable 
insights for project managers, enabling them to allocate resources effectively and 
prioritize quality assurance activities, ultimately leading to improved software 
reliability and customer satisfaction. 
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1. Introduction 

In the realm of software development, defect prediction is a critical task that directly impacts 
project success, resource allocation, and product quality. Traditionally, recording detailed 
defect information for each software module can be a time-consuming and labor-intensive 
process. As a result, many software development teams opt to simplify data collection by 
recording only the presence of defects, represented as a Boolean value indicating whether a 
module has one or more reported defects. While this approach streamlines data collection, it 
poses challenges for accurate defect prediction due to the inherent diversity in module 
attributes, such as lines of code (LOC). 
Existing defect prediction techniques often rely on classification algorithms based on machine 
learning, which aim to categorize modules as defective or non-defective. However, these 
algorithms may not provide quantitative measures like defects per thousand lines of code 
(KLOC), which are crucial for effective project management and quality assurance. Moreover, 
the imbalanced nature of defect datasets, where the majority of modules are non-defective, can 
hinder the performance of classification algorithms. 
To address these challenges, we propose a novel method that estimates the number of defects 
in a software project using probability models and censoring techniques. By treating the 
number of defects as a latent variable following a probability distribution, we establish a 
relationship between the observed Boolean value (i.e., the presence of defects) and the 
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underlying defect count using censoring. This approach enables the estimation of defect density 
and the prediction of defects in untested code, providing valuable insights for project managers 
and quality assurance teams.The proposed method offers several advantages over existing 
defect prediction techniques. First, it allows for the estimation of quantitative measures like 
defects per KLOC, which are more informative than binary classifications. Second, the method 
can handle the imbalanced nature of defect datasets by leveraging probability distributions and 
censoring. Finally, the approach is flexible and can be implemented using various tools and 
algorithms, ensuring its adaptability to different software development environments. 
In this paper, we present the theoretical foundation of the proposed method and demonstrate 
its application in a real-world software development scenario. We investigate Poisson and 
Binomial models for defect estimation and compare their performance using different 
implementation tools. The results highlight the consistency and effectiveness of the proposed 
approach in predicting defect density and estimating the total number of defects in a project. 
The remainder of the paper is organized as follows: Section 2 provides an overview of related 
work in software defect prediction. Section 3 describes the proposed method, including the 
probability models and censoring techniques used. Section 4 presents the experimental setup 
and results, discussing the findings and their implications for software development projects. 
Finally, Section 5 concludes the paper and outlines future research directions. 

2. Related Work 
 
To improve software quality and reliability, many software defect prediction models had been 
emerged for the past decades [1-5]. However, the appropriate method that ensures the high 
quality of software production still remains an open question. The existing works can be 
divided into two parts: machine learning based and deep learning based. 
Peng et al. combine various measures to evaluate the quality of classifiers for software defect 
prediction. The experiment used 13 classifiers on 11 software defect datasets, and the results 
indicate that SVM, C4.5 and KNN were the top algorithms [6]. Pendharkar et al. selected the 
appropriate inputs and learned a classification. The proposed hybrid exhaustive searchs and 
probabilistic neural networks worked well for the small scale datasets [7]. Tumar et al. develop 
an adaptive synthetic sampling approach based on binary moth flame optimization. For the 
PROMISE dataset, the proposed technique increases the prediction performance for various 
classifiers. The KNN algorithm wins the best runtime and the linear discriminant analysis gets 
the highest auc value [8]. Aquil et al. put forward a stacking classifier technique to build an 
efficient software defect prediction model. In the evaluation stage, 13 datasets were used to test 
different prediction methods, and had the best results of all the methods compared [9]. 
Turabieh et al. developed a classifier to address the software defect prediction problem. The 
work used 19 software defect datasets for evaluating the proposed method, and achieved a high 
accuracy performance [10]. 
Most early software defect prediction researches based on machine learning were involved in 
buggy and non-buggy, i.e. the binary classification problem. However, the information is useful 
but not enough. In addition, Features selection also a challenge for machine learning. Liang et 
al. introduced a Seml framework, which combines word embedding and LSTM model for 
software defect prediction. The results of the experiments show Seml outperforms three 
compared approaches on most of the datasets [11]. Phan et al. proposed a multi-view CNN 
based on labeled directed graphs. In order to adapt to dynamic structures for local regions of 
graphs, convolutional filters were designed for the model. The results show that the proposed 
model outperforms compared deep neural networks for malware analysis and software defect 
prediction task[12]. Song et al. identified the critical software defects based on neural networks 
algorithms. The work is an improved Elman neural network for software defect prediction. The 
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authors evaluated the proposed model on 7 PROMISE repositories projects. The results suggest 
that the improved Elman neural network model is prominent [13]. In [14], the authors present 
a combined approach for software defect prediction. The proposed neural network model with 
PCA feature reduction scheme improved the prediction performance. The experiments were 
implemented on NASA dataset. The results show that the proposed approach can provide better 
performance for software defect prediction. In [15], authors introduced a novel deep learning 
framework to predict the number of defects. In which, a module consisted of a set of software 
metrics, and predicted the amount of defects. The results illustrated that the proposed 
approach can improve software defect prediction performance. 
The aforementioned literatures highlight two significant challenges: (1) estimating the number 
of defects if only the presence of defects is known; (2) evaluating the quality of parameter 
estimations. To overcome the above issues, we propose an estimation approach for software 
defects. 

3. Methods 

Without loss of generality, any datum of Promise dataset can be used as benchmark of this 
research, and CM1 is adopted here. It provides much information, such as "lines of code" (LOC), 
"complexity", or "module has/has not one or more reported defects" (i.e. the presence of 
defects). For the sake of simplicity, we investigate only LOC and the presence of defects, with 
which to estimate the number of defects. 
First, the distribution of LOC is studied. Second, several models of defect density are proposed. 
With this information, the number of defects can be estimated. 

3.1. Lines of Code 
Lines of code are elementary information of any module. As shown in Figure 1, in CM1, there 
are 498 modules, from which only three have more than 350 lines, while most modules have 
fewer than 200 lines. Our first question will be: what is the distribution of LOC? 
We have two options: 
 Poisson Distribution 
 Gamma Distribution 
 

 
Figure1. Histogram of LOC 

 

Poisson distribution (with parameter λ) seems appropriate for LOC, which is an integer. 
 

                                 Xi ~ Poisson(λ)                                                                    (1) 
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For a full Bayesian model, a distribution for λ is also defined, such as uniform over the positive 
real numbers: 
 

                                  λ ~ U(0,∞)                                                                       (2) 
 
Being an integer, LOC can instead be treated as positive real number following Gamma 
distribution. 
 

Xi ~ Gamma(α, β)                                                               (3)  
 

α and β follow uniform distribution: 
 

                               α, β ~ U(0,∞)                                                              (4) 

3.2. Defect Density 
Imbalance is a noticeable property of the data because most modules (90%) of CM1 are labeled 
with no defect. In other words, 90% of correctness can be assured by assuming no defect in the 
binary classification. Therefore, classification accuracy may be not a feasible measure for 
imbalanced datasets. 
 

 
Figure 2. Histogram of LOC for defective and defectless modules 

 
Knowing defective or not, as well as lines of code, we are actually interested in the number of 
defects. There is a relationship between the former and latter: defective implies that the 
number of defects is an unknown integer that is greater than one, and no defect means the 
number of defects is zero. The relationship is called censoring in the fields of reliability and 
survival analysis. With censoring, the number of defects can be inferred from the presence of 
defects.  
As the number of defects is unknown, evaluating the fit of the model may be inappropriate. Our 
scheme is to assume Poisson or Binomial distribution for the number of defects, and to compare 
the two results. 
 Poisson without intercept 
The defect per line of code (defect density) is modeled with θ, which is shared by all modules. 
If the line of code of ith module is Xi, then the number of defects of ith module follows Poisson 
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distribution with parameter θXi. Also, if the lines of code Xi is zero, the number of defects will 
also be zero, i.e. having not intercepted. 
 

                                            Yi ~ Poisson(θXi)                                                               (5) 
 
The number of defects Yi is an unobservable latent variable, and after censoring, Zi is observed. 
If Yi is zero, Zi will also be zero, otherwise, one. 
 Poisson with intercept 
Other factors, in addition to the lines of code, such as interface complexity, may also affect the 
number of defects. These factors can be modeled with an intercept c. 
 

                               Yi ~ Poisson(θXi + c)                                                            (6) 
 
If the lines of code is zero, the number of defects can be nonzero. Intercept can measure the 
contribution of other factors to the number of defects. 
 Binomial Distribution 
Binomial distribution can also model the number of defects. If there is Xi lines of code in the ith 
module, and the defective rate per line is θ, then the number of defects follows Binomial 
distribution. 
 

                               Yi ~ Binomial(θ, Xi )                                                             (7) 
 
The Binomial distribution can be approximated by Poisson distribution, if Xi is large and θ is 
small. In CM1 data, the median of Xi, which is only 17, may be not large enough. Therefore, we 
will compare the results of the two models. Freeing from the above approximation condition, 
binomial distribution has the limitation of omitting intercept. 

4. Experiment 

Two MCMC algorithms are used to estimate the parameters of probability models: 1) Gibbs 
Sampling and 2) Metropolis. 
MHMC is used for Binomial model, while JAGS for other models. The ability of coping with 
censored data is a benefit of MCMC. All experiments adopt the same configuration: 
 3 chains 
 5000 iterations per chain 
 5000 burn-in 

4.1. Lines of Code 
As shown in Table 1, the λ parameter of Poisson distribution, which is the average lines of code, 
is about 30. The 3rd step of Bayesian analysis is to evaluating the fit of the model. As shown in 
Figure 3 of the quantile-quantile plots, the disparate between theoretical and empirical 
distributions is obvious. It suggests that the LOC does not follow Poisson distribution. For 
Poisson, the mean and variance should be equal, but in this case, the mean of LOC is about 30 
and the variance is much larger than 30. 
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Figure 3. Quartile-quartile plots for Poisson model 

 
Table 1. Parameter estimates for Gamma distribution 

Parameter Mean SD Time-series SE 
λ 29.646482 0.243528 0.002498 

 
Experimented with similar configuration for Gamma distribution, the shape parameter is about 
1.080, and rate 0.036. The quantile-quantile plots (Figure 4) show that theoretical and 
empirical distributions are more comparable than their Poisson counterpart. 
 

 
Figure 4. Quartile-quartile plots for Gamma model 

4.2. The Number of Defects 
Since LOC is observed, the estimated parameters of Gamma distribution, α and β, are similar to 
Table 1. In Table 2, the average defects per KLOC (thousands of lines of code), which is θ, is 
about 3 for CM1. 
Above experiments are modeled with BUGS language, implemented with JAGS. The same 
models can also be transformed to potential energy and implemented using Metropolis 
algorithm. The advantage is flexibility. 
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Table 2. Poisson model without intercept 
Parameter Mean SD Time-series SE 

α 1.079870 0.060870 1.337e-03 
β 0.036508 0.002606 5.792e-05 
θ 0.003394 0.000484 3.937e-06 

 
Assuming the number of defects follows Binomial distribution with parameters θ and LOC, from 
Table 3, we find that the estimated α and β are similar to those in Table 1 and Table 2. The fact 
indicates that the results of different algorithms are consistent. The estimated θ is matched with 
Table 2, therefore, two different models can draw comparable results, that is, 3 defects per 
KLOC. 
 

Table 3. Binomial model 
Parameter Mean SD 

α 1.07555 0.0609205 
β 0.0362623 0.00256943 
θ 0.00371736 0.000541352 

 
In addition to LOC, other factors, such as interface complexity, may also contribute to the 
number of defects. The influence is modeled with the intercept, which signifies average number 
of defects for modules with zero line. As shown in Table 4, with intercept, the number of defects 
per KLOC drops to 2. As the estimated c is about 10 times to θ, the defects introduced by other 
factors are close to the effect of 10 LOC. As the median of LOC is only 17, other factors have 
notable influence on the number of defects.   
 

Table 4. Poisson model with intercept 
Parameter Mean SD Time-series SE 

α 1.079792 0.0598676 1.285e-03 

β 0.036482 0.0025294 5.411e-05 

c 0.023280 0.0137021 2.070e-04 

θ 0.002676 0.0005887 7.591e-06 

5. Discussion 

This research investigates three models for the number of defects: 
 Poisson without intercept 
 Poisson with intercept 
 Binomial 
The tools are based on two algorithms: 
 Gibbs 
 Metropolis 
For the distribution of LOC, Gamma fits better than Poisson.The fact that two algorithms arrive 
similar estimates for parameters of Gamma distribution α and β testifies the implementation of 
Metropolis algorithm. In all three models, the estimated parameters of Gamma distribution are 
similar. Because the LOC is actually observed, the modelling of number of defects and LOC is 
uncorrelated. 
Both Binomial and Poisson models obtain 3 defects per KLOC, which may reflect the true rate. 
Only CM1 of Promise dataset is used; other datasets may have different results.The intercept is 
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10 times to the number of defects per LOC. Therefore, other factors than LOC can influence the 
number of defects. The specific contributing factors in Promise dataset are to be identified. 
The experimental results demonstrate the effectiveness of the proposed method in estimating 
the number of defects using LOC and defect presence data. By investigating Poisson and 
Binomial models with different implementation tools, such as JAGS and Metropolis, we 
observed consistent results across the models. Both the Poisson and Binomial models yielded 
similar estimates for defect density, with the CM1 dataset showing approximately 3 defects per 
KLOC.  
The inclusion of an intercept term in the Poisson model provided valuable insights into the 
influence of factors beyond LOC on the number of defects. The estimated intercept coefficient 
suggested that factors like interface complexity can have a significant impact on defect 
occurrence, with their contribution being comparable to the effect of 10 LOC. This finding 
underscores the importance of considering additional factors in defect prediction models to 
improve their accuracy and reliability. 
While the proposed method has been applied to the CM1 dataset from the Promise repository, 
it is essential to assess its generalizability by evaluating its performance on other datasets. 
Future research should focus on validating the method across diverse software projects and 
domains to ensure its robustness and applicability in various contexts. Moreover, identifying 
and incorporating specific contributing factors from the Promise dataset, such as complexity 
measures or developer experience, could further enhance the predictive power of the models. 
The proposed method offers several practical implications for software development projects. 
By providing quantitative estimates of defect density and the total number of defects, project 
managers can make informed decisions regarding resource allocation and quality assurance 
strategies. The ability to predict defects in untested code allows for proactive measures to be 
taken, such as targeted testing or code reviews, ultimately reducing the risk of defect spillover 
into later stages of the development lifecycle.  
Furthermore, the proposed method can be integrated into existing software development 
processes and tools, enabling seamless defect prediction and monitoring. The consistency of 
results across different implementation tools demonstrates the flexibility of the approach, 
allowing development teams to choose the most suitable tools based on their specific 
requirements and expertise. However, it is important to acknowledge the limitations of the 
proposed method. The accuracy of defect predictions relies on the quality and 
representativeness of the input data, including LOC and defect presence information. Ensuring 
the reliability and consistency of data collection processes is crucial for obtaining meaningful 
results. Additionally, the method assumes that the relationship between LOC and the number 
of defects follows specific probability distributions, which may not hold true in all software 
projects.  

6. Conclusion 

In this paper, we proposed a novel method for estimating the number of software defects using 
probability models and censoring techniques, based on LOC and defect presence data. The 
method addresses the challenges associated with traditional defect prediction approaches, 
which often rely on binary classification and may not provide quantitative measures of defect 
density. 
The experiment results show its effectiveness in predicting defect density and estimating the 
total number of defects in a project. The consistency of results across Poisson and Binomial 
models, implemented with different tools, highlights the robustness and reliability of the 
approach. Moreover, the proposed method contributes to the growing body of knowledge in 
software defect prediction research. The integration of probability models and censoring 
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techniques offers a fresh perspective on defect estimation, opening up new avenues for further 
exploration and refinement.  
As the demand for high-quality software continues to grow, the adoption of such data-driven 
defect prediction techniques will become increasingly crucial for the success of software 
development projects. Future research should focus on validating the method across diverse 
datasets, incorporating additional contributing factors, and exploring alternative probability 
models to capture the complexity of software defects.  

Acknowledgments 

The authors would like to acknowledge partial support by the project of the Natural Science 
Foundation of the Education Department of Anhui Province (Grant No. KJ2020A0012). This 
study is also partially supported by EU-funded AI REDGIO 5.0 project (Grant Agreement ID: 
101092069). 

References 

[1] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, A systematic literature review on fault 
prediction performance in software engineering, IEEE Transactions on Software Engineering, vol. 
38(2012)No.6, p.1276–1304. 

[2] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G.Q. Zhang, Transfer learning using computational 
intelligence, Knowledge-Based Systems, vol. 80(2015)No. C, p.14–23. 

[3] T. J. Wang, Z.W. Zhang, X. Y. Jing, and L.Q. Zhang, Multiple kernel ensemble learning for software 
defect prediction, Autom Softw Eng, vol.23(2016), p.569–590.  

[4] X. Chen, D. Zhang, Y.Q. Zhao, Z.Q. Cui, C. Ni, Software defect number prediction: unsupervised vs 
supervised methods, Information and Software Technology, vol. 106(2019), p.161–181. 

[5] Z. Xu, J. Liu, etc., Software defect prediction based on kernel PCA and weighted extreme learning 
machine, Information and Software Technology, vol.106(2019), p.182–200. 

[6] Y. Peng, Gang. K, G.X. Wang, and H.G. Wang, Empirical evaluation of classifiers for software risk 
management, International Journal of Information Technology & Decision Making, (3009),p.749–
767.  

[7] Pendharkar PC, Exhaustive and heuristic search approaches for learning a software defect 
prediction model, Eng Appl Artif Intell, vol. 23(2010)no. 1, p.34–40.  

[8] I. Tumar, Y. Hassouneh, H. Turabieh, and T. Thaher, Enhanced binary moth flame optimization as a 
feature selection algorithm to predict software fault prediction, IEEE Access, vol.8(2020), p.8041–
8055.  

[9] M.A.I. Aquil, Predicting software defects using machine learning techniques, International Journal 
of Advanced Trends in Computer Science and Engineering, vol.9(2020)no.4, p. 6609–6616. 

[10] Turabieh H, Mafarja M, and Li X, Iterated feature selection algorithms with layered recurrent neural 
network for software fault prediction, Expert Syst Appl, vol. 122(2019), p.27–42. 

[11] H. Liang, Y. Yu, L. Jiang, and Z. Xie, Seml: A semantic LSTM model for software defect prediction, 
IEEE Access, vol. 7(2019), p.83812–83824. 

[12] A.V. Phan, M.L. Nguyen, Y.L. H. Nguyen, and L.T. Bui, DGCNN: A convolutional neural network over 
large-scale labeled graphs, Neural Networks, vol. 108(2018), p.533–543. 

[13] K. Song, S.K. Lv, D. Hu, and P. He, Software defect prediction based on elman neural network and 
cuckoo search algorithm, Mathematical Problems in Engineering, (2021), p.1-14. 

[14] R. Jayanthi, L. Florence, Software defect prediction techniques using metrics based on neural 
network classifier, Cluster Comput, vol. 22(2019) no.1, p. 77–88. 

[15] L. Qiao, X.S. Li, Q. Umer, and P. Guo, Deep learning based software defect prediction, 
Neurocomputing, vol. 385(2020), p.100–110. 


