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Abstract 

In this paper, we get the empirical Bayes test rules for Exponential-Weibull distribution 
in moving extremes ranked set. Its asymptotic optimality and convergence rate are 
obtained. 

Keywords  

Moving extremes ranked set, empirical Bayes, Exponential distribution. 

1. Introduction 

Ranked set sampling (RSS) was introduced by McIntyre to estimated pasture yields[1]. Moving 
extremes ranked set sampling has been used in many fields such as environment and sociology. 
Since Robbins proposed empirical Bayes (EB) approach, it has been developed [2-8].      

However, EB method are based on simple random sampling. An idea is to apply EB methods in 
moving extremes ranked set sampling. Recently, empirical Bayes test rule and its asymptotical 
property for the parameter of power distribution based on RSS has been established[9]. In this 
paper, we obtain empirical Bayes test rule for Exponential-Weibull distribution in moving 
extremes ranked set sampling. 

Let X have a conditional density function for given θ  
1( | ) e (1 e )    x xf x                                                          (1.1)  

                                                        

where θ is unknown parameterand  0   is parameter space.  

We discuss the following test problem:  

0 0 1 0: :H H                                                                 (1.2)   

                                           

where 𝜃0 is given constants. 
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where a >0,d={d0,d1} is action space, d0 and d1 imply acceptance and rejection of 𝐻0 
respectively.  

Suppose that the prior distribution G(θ) of parameter the θ is unknown.   

We have random decision function             

      δ(x)=P(accept 𝐻0|X=x).                                                        (1.3)   
                                                           

Then, the risk function of δ(x) is shown by  
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where  
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The marginal density function of X is shown by 
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By (1.5), we have (1)

1 2( ) ( ) ( ) ( ) ( )G Gx u x f x u x f x                                              

where 2

1( ) e e 3x xu x    ,
2 ( ) u x  

0(e 1)(e )x x   . 

Using (1.5), Bayes test function is obtained as follows  
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Further, we obtian the minimum Bayes risk as follows 
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From above that δ(x)=δG(x) and R(G) can be obtained when the prior distribution of G(θ) is 
given. If not, we use the EB method. The rest of this paper is organized as follows. Section 2 
presents an EB test under ranked set sampling. In section 3, we obtain asymptotic optimality 
and the optimal rate of convergence of the EB test in moving extremes ranked set sampling.  

2. Construction of EB test under Moving Extremes Ranked Set 

Supposed that X(1)1,X(1)2,⋯,X(1)m,X(2)1,X(2)2⋯,X(2)m,⋯,X(k)1,X(k)2⋯,X(k)m be a 
balanced moving extremes ranked set sample from population which has the common marginal 
density function fG(x). We assume perfect ranking. Denote thatX(1)1 ,X(1)m,X(2)1 ,X(2)m, 
X(k)1 ,X(k)m are moving extremes ranked set historical samples, and X is present sample. 
Assume f(x)∈C𝑠,𝛼,x∈ R1, where   C𝑠,𝛼={g(x)|g(x) is a probability density function; the s−he 

order derivative 𝑔(𝑠)(x) is continuous with |𝑔(𝑠)(x)|≤α,s≥3,α>0}, n km .  

Supposed that Kr(x) be a Borel measurable bounded function vanishing off (0,1) such that (C1):  
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Kernel estimator of f(x) is defined by 

 fn(x)=1/𝑚𝑘ℎ𝑛∑Kr(x−X(i)1/ℎ𝑛)+ Kr(x−X(i)m/ℎ𝑛)                                           

 where ℎ𝑛 is a positive and smoothing bandwidth, and lim𝑛→∞ℎ𝑛=0. Thus, the estimator of β(x) 
is shown by              

  (1)

1 2( ) ( ) ( ) ( )n n nx u x f x u x f x                                                    (2.2)   
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And, the EB test function is defined as follows  
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Let E stand for mathematical expectation with respect to the joint distribution of X(1)1, 
X(1)m,X(2)1, X(2)mX(k)1, X(k)m. Then, the overall Bayes risk of δn(𝑥) is shown by  
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                                                               

If lim𝑛→∞ R(δ𝑛,G)=R(δ𝐺,G),{δ𝑛(x)} is called asymptotic optimality of EB test function. If

     , , q

n GR G R G O n    , where 𝑞>0,  qO n  is asymptotic optimality convergence rates of EB 

test function {δ𝑛(x)}. Before proving the theorems, we need the following lemmas. Supposed 
that c,c1 be different constants in different cases even in the same expression.   

Lemma. R(δ𝐺,G) and R(δ𝑛,G) are defined by above, then   

0≤R(δ𝑛,G)−R(δ𝐺,G)≤𝑎∫|β(x)|𝑃(|β𝑛(x)−β(x)|≥|β(x)|)dxΩ.  

3. Asymptotic Optimality and Convergence Rates of Empirical Bayes test 
in Moving Extremes Ranked Set  

Theorem 3.1. Assume (C1) and the following regularity conditions hold. 

(1)ℎ𝑛>0, lim𝑛→∞ℎ𝑛=0,  

(2)∫ 2 dG(θ)<∞,  

(3)𝑓 (𝑥) is continuous function,   

Then,  lim𝑛→∞ R(δ𝑛, G)=R(δ𝐺,G).  

Proof. Lemma 1 shows that 0≤R(δ𝑛,G)−R(δ𝐺,G)≤𝑎∫|β(x)|𝑃(|β𝑛(x)−β(x)|≥|β(x)|)dxΩ.  

Applying Fubini theorem,  
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Denote  n x =|β(x)|𝑃(|β𝑛(x)−β(x)|≥|β(x)|).  

Obviously,  n x ≤|β(x)|. Then, by domain convergence theorem, we have  

0≤lim𝑛→∞ R(δ𝑛, G)−R(δ𝐺 ,G)≤∫[lim𝑛→∞  n x ]Ωⅆ𝑥.                   (3.1)  

Next, we need prove that lim𝑛→∞  n x =0 holds almost everywhere. By Markov's and 

Jensen's inequality,  
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 Substituting (3.2) into (3.1), the proof of theorem 3.1 is finished.  

Theorem 3.2. Assume (C1) and the following regularity conditions hold. 
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Proof.  Using Markov's inequality, we get  
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Applying Lemma and the conditions (4) in the Theorem (3.2), we obtain 
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Substituting (3.4)-( 3.5) into (3.3), we have R(δ𝑛, G)−R(δ𝐺, G)=     2 2 1s s
O n

   .  

The proof of theorem 3.2 is finished.   

Remark 3.1. When 1  , s  ,   1 2 1s s
O n

   nears  1 2O n .  
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