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Abstract 

The automobile industry is an important industry supporting the development of 
China's national economy. New energy vehicles have developed rapidly in recent years 
with their advantages of energy conservation and emission reduction. However, a large 
number of power batteries are about to be scrapped. If they are not handled properly, 
they will cause serious environmental pollution and waste of resources. Therefore, this 
paper establishes a new energy vehicle power battery supply recycling network model 
with the goal of minimizing the total system cost and considering the constraints of 
multiple random scenarios and multiple network levels. Then, based on the 
characteristics of response surface model and particle swarm optimization algorithm, 
an improved particle swarm optimization algorithm based on response surface model is 
designed, and different scale examples are set to verify the algorithm. The results show 
that the improved particle swarm optimization algorithm based on response surface 
model has good efficiency and quality. 
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1. Introduction 

Automobile industry is an important industry supporting the development of China's national 
economy. Since the 21st century, the development of a new generation of energy-saving and 
environment-friendly vehicles represented by new energy electric vehicles has become a 
universal consensus all over the world. As the core component of new energy vehicles, the 
service life of power battery is generally 5-8 years. China's new energy vehicle power battery 
is about to usher in a centralized scrapping period. Although new energy vehicles are relatively 
green and environment-friendly, there are still heavy metals such as nickel, cobalt, manganese 
and other organic pollutants in the electrolyte of new energy vehicle power battery. If not 
handled properly, it will cause serious harm to human body and environment and cause huge 
waste of resources. In addition, after scrapping, the power battery still has a high voltage 
ranging from 300-1000v. If it is operated improperly in the process of recovery, disassembly 
and treatment, it may cause explosion. Therefore, it has become a major concern in the 
development of new energy vehicles to do a good job in the recycling and scrapping of waste 
batteries and avoid "secondary pollution" and resource waste of power batteries. 

In this paper, the power battery supply recovery process of new energy vehicles is described as 
a cost minimization problem under the premise of uncertain recovery quality. Aiming at the 
problems existing in the power battery supply recovery process of new energy vehicles, the 
regional library location model for determining the number and location of Regional Libraries 
and the cost minimization model under uncertain recovery quality of power batteries are 
successively established. 
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The organizational structure of the paper is as follows. The first section introduces the 
background of new energy vehicle power battery. The second section reviews the relevant 
technical literature from the perspectives of power battery recovery, uncertain demand and 
solution methods. In the third section, a new energy vehicle power battery supply recycling 
network is proposed, and the model of this problem is established. In order to solve the model, 
the fourth section proposes an algorithm based on traditional PSO by introducing RBF response 
surface model. Section 5 presents small-scale and large-scale numerical results based on a case 
study. The sixth section summarizes the whole thesis. 

2. Literature References 

2.1. Power Battery Recovery 

At present, foreign scholars have carried out research on various problems related to power 
battery recycling, such as battery margin estimation, recycling mode, recycling channel, 
recycling network design and so on. Change L [1] proposed a method to quickly estimate the 
residual capacity of waste power batteries from the perspective of current distribution in 
parallel connection units. De Giovanni et al. [2] studied the game problem of two-stage closed-
loop supply chain and concluded that the battery manufacturer occupies the residual value of 
waste power batteries. Natkun et al. [3] studied the recovery rate of different types of batteries, 
predicted the sales volume of new energy vehicles under the influence of different economic, 
social, ecological and technical factors, and analyzed the service life of different types of power 
batteries and the possible service life of batteries in recycling. Chuang et al. [4] studied the 
newsboy model with unstable demand and uncertain cost recovery. Tosarkani et al. [5] first 
applied the complete fuzzy programming method to the multi-objective power battery reverse 
logistics network, and solved the uncertain problem by combining fuzzy programming, 
stochastic programming and robust optimization. 

2.2. Forward and Reverse Logistics Network 

There is little research on forward logistics network at home and abroad. Most scholars study 
forward logistics network and reverse logistics network together. Ramezani et al. [6] 
established a stochastic multi-objective model for forward / reverse logistics network design 
in uncertain environment with the goal of maximizing profit, customer responsiveness and 
quality. Ashfari [7] et al. Established a robust model of forward and reverse integrated logistics 
network under uncertainty, and optimized the location and scale of facilities and service 
centers in forward / reverse logistics. Khatami et al. [8] redesigned the existing forward / 
reverse logistics network based on the uncertainty of product demand, established a random 
mixed integer model of multi cycle and multi product supply chain network, and used K-means 
clustering algorithm to reduce the number of scenarios for calculation.  

In 1981, Lambert and stock first put forward the concept of reverse logistics, describing reverse 
logistics as "flow in the opposite direction of forward logistics". Sibel et al. [9] designed the 
reverse logistics network of German washing machines and drum dryers, established a profit 
maximization model considering single-stage and multi-stage, and solved the location of 
detection center and re-manufacturing center. Shokouhyar et al. [10] established a two-stage 
reverse logistics network planning model for waste electrical and electronic equipment based 
on the goal of sustainable development, and designed a multi-objective genetic algorithm to 
determine the best location of the collection center and recycling place. 

2.3. Solving Algorithm 

For the optimization design of logistics network, the current algorithms are mainly divided into 
accurate algorithm and heuristic algorithm. Yuzhuo Qi [11] established a mixed integer 
programming model for the production path problem of reverse logistics and remanufacturing, 
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which was solved by branch cutting guided search algorithm. cHao et al. [12] proposed a 
dynamic programming algorithm to solve the optimal combination strategy of transportation 
modes in container multimodal transport system. Schweiger et al. [13] used the hybrid tabu 
search algorithm to solve the optimization problem of paper recycling network, so as to realize 
the location decision of continuous and discrete facilities. Sze et al. [14] designed an adaptive 
variable neighborhood search algorithm using large neighborhood search algorithm as 
diversification strategy for the path problem with Limited vehicle capacity. 

2.4. Summary of Literature Review 

Because the power supply recovery network of new energy vehicles designed in this paper has 
a large scale, involves many network levels and nodes, and considers the influence of multiple 
uncertain random factors, it is difficult to solve it by accurate algorithm. Therefore, this paper 
adopts particle swarm optimization algorithm and improves it according to its characteristics 
combined with response surface model, and designs an improved particle swarm optimization 
algorithm based on response surface model to solve large-scale network problems. 
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Figure 1: Design Diagram of Power Battery Supply Recycling Network of New Energy Vehicles 

3. Establishment of power battery supply and recovery network model 

3.1. Problem description 

This paper studies the optimal design of the power battery supply recovery network of new 
energy vehicles. Based on the characteristics of the supply and recovery network, this chapter 
applies some nodes in the supply network to the recovery network to reasonably design the 
power battery supply recovery network of new energy vehicles, so as to reduce the total cost 
of the system. 

In addition, the design considers the advantages of integrating different power battery 
recycling modes: the regional library selected by dealers in the supply network is used as the 
power battery recycling point to improve the recycling efficiency of power batteries; Make use 
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of the transportation advantages and logistics network advantages of third-party logistics 
enterprises to improve the circulation efficiency of power batteries; It is decided to establish 
professional power battery processing nodes such as recycling detection center, processing 
center and energy storage center to improve the echelon utilization rate of power battery and 
realize the effective recycling of power battery. The specific chain recycling network is shown 
in Figure 1. 

3.2. Model Assumptions 

The optimization design of power battery supply recycling network for new energy vehicles is 
complex, and it is difficult to take all the factors involved into account. Therefore, the 
assumptions of this paper mainly include the following points: 

(1) In terms of cost, only recovery cost, construction cost, transportation cost and operation 
cost are considered, and the fixed cost of each facility is known. The unit recovery cost of battery 
in the same scenario is the same. 

(2) The unit transportation cost of each facility node is the same. The freight of products from 
dealers to consumers and Regional Libraries, and the freight of products from Regional 
Libraries and consumers to dealers are not included in the model. 

(3) Battery manufacturers, new energy vehicle manufacturers, dealers and regional libraries 
exist in themselves, do not need to be rebuilt, and their operating costs are fixed. 

(4) Battery manufacturers, new energy vehicle manufacturers, regional warehouses, recycling 
and testing centers, treatment centers, waste disposal centers and energy storage centers have 
the maximum receiving and processing capacity. 

(5) According to the demand of the consumer group, the probability of the recycling detection 
center transporting to other functional nodes and the processing center transporting to other 
functional nodes is random and follows the normal distribution. The above probabilities are 
not set differently for a single node within the same level. 

(6) The model is constructed based on the single cycle situation. 

3.3. Symbol definition 

S :Collection of random scene,  1,2,... ,...,S s S  

G :Collection of battery manufacturers,  1,2,... ,...,G g G  

H :Collection of new energy vehicle manufacturers,  1,2,... ,...,H h H  

T :Consumer group collection,  1,2,... ,...,T t T  

I :Area library collection,  1,2,... ,...,I i I  

J :Collection of recycling detection centers,  1,2,... ,...,J j J  

K :Collection of processing centers,  1,2,... ,...,K k K  

L :Collection of waste disposal centers,  1,2,... ,...,L l L  

M :Collection of energy storage centers ,  1,2,... ,...,M m M
 

3.4. Parameter definition 

tsx :Demand of consumer group T under scenario s 

0p :Recovery cost per unit of power battery 

gN :Production capacity of battery manufacturer 
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hN :Manufacturing capacity of new energy vehicle manufacturing enterprises 

iN :Storage capacity of Regional Library 

jN :Recycling detection capability of recycling Detection Center 

kN :Processing capacity of processing center 

lN :Processing capacity of waste disposal center 

mN :Storage capacity of energy storage center 

s :Probability of scenario occurrence 

s :Recovery rate of power battery 

jks :The probability that the power battery will be transported to the treatment center through 

the recycling and testing center 

jls :The probability that the power battery will be transported to the waste disposal center 

through the recycling and testing center 

jms :The probability that the power battery is transported to the energy storage center through 

the recycling and testing center 

kls :The probability that the power battery will be transported to the waste disposal center 

through the processing center 

kgs :The probability that the power battery will be re-manufactured by the processing center 

and transported to the battery manufacturer 

ghc : Unit transportation cost from battery manufacturer to new energy vehicle manufacturer 

hic :Unit transportation cost of new energy vehicle manufacturing enterprises to regional 

warehouses 

ijc :Unit transportation cost from regional library to recycling Detection Center 

jkc :Recover the unit transportation cost from the detection center to the processing center 

jlc :Unit transportation cost from recycling detection center to waste disposal center 

jmc :Recover the unit transportation cost from the detection center to the energy storage center 

klc :Unit transportation cost from treatment center to waste disposal center 

kgc :Unit transportation cost from processing center to battery production plant 

ghd :Distance from battery manufacturer to new energy vehicle manufacturing enterprise 

hid :Distance from new energy vehicle manufacturing enterprises to Regional Libraries 

ijd :Distance from area library to recycling Detection Center 

jkd :Distance from recycling detection center to processing center 

jld :Distance from recycling detection center to waste disposal center 

jmd :Distance from recovery detection center to energy storage center 

kld :Distance from disposal center to waste disposal center 

kgd :Distance from processing center to battery factory 

jb :Recover the construction cost of the testing center 
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kb :Construction cost of treatment center 

lb :Construction cost of waste disposal center 

mb :Construction cost of energy storage center 

gf :Operating cost of battery manufacturer 

hf :Operating cost of new energy vehicle manufacturing enterprises 

if :Operating cost of Regional Library 

jf :Recover the unit product operation cost of the testing center 

kf :Unit product operation cost of processing center 

lf :Unit product operation cost of waste disposal center 

mf :Unit product operation cost of energy storage center 

3.5. Definition of decision variables 

gsx :Original output of battery manufacturer g in scenario s 

ghsx :The number of power batteries transported from battery manufacturer g to new energy 

vehicle manufacturer h in scenario s 

hisx :The Number of products delivered to regional warehouse I by new energy vehicle 

manufacturing enterprise h under scenario s 

itsx :The number of power batteries transported from area library I to consumer t in scenario s 

tisx :The number of power batteries transported by consumer t to regional library I in scenario 

s 

ijsx :The number of power batteries transported from area library I to recycling detection center 

J under scenario s 

jksx :The number of power batteries transported from detection center J to processing center K 

in scenario s 

jlsx :The number of power batteries transported from the recycling detection center J to the 

waste disposal center L in scenario s 

jmsx :The number of power batteries transported from recovery detection center J to energy 

storage center m in scenario s 

klsx :The number of products transported from treatment center K to waste treatment center L 

in scenario s 

kgsx :The number of products transported from processing center K to battery manufacturer g 

in scenario s 

jY :Whether the recovery detection center J is established. If it is established, the value is 1; 

otherwise, it is 0 

kY :Whether the processing center K is established. If it is established, the value is 1; otherwise, 

it is 0 

lY :Whether the waste disposal center L is established. If it is established, the value is 1; 

otherwise, it is 0 

mY :Whether the energy storage center m is established. If it is established, the value is 1; 

otherwise, it is 0
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3.6. Model Building 

Total objective function = recovery cost + construction cost + transportation cost + operation 
cost 

1 2 3 4minTC TC TC TC TC                                                    (1) 
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Aiming at the supply recovery network with uncertain power battery recovery quality of new 
energy vehicles, a mixed integer stochastic programming model aiming at minimizing the total 
system cost is established in this paper. Among them, the objective function (1) represents the 
minimization of four costs in the supply recovery network, including the recovery cost of power 
battery (2), the construction cost of recovery detection center, treatment center, waste material 
treatment center and energy storage center (3), the transportation cost between network 
nodes (4), and the operation cost of recovery detection center, treatment center, waste material 
treatment center and energy storage center (5). 

Constraint (6) means that the power batteries recovered and originally manufactured by the 
battery manufacturer are transported to the whole vehicle manufacturing enterprise of new 
energy vehicles; Constraint (7) means that the power batteries received by the whole vehicle 
manufacturing enterprise of new energy vehicles are transported to the regional warehouse; 
Constraint (8) indicates that the new energy vehicles received by the regional library are 
transported to the consumer area; Constraint (9) indicates that the number of new energy 
vehicles transported from the regional library to the consumer group is equal to the demand of 
the consumer group; Constraint (10) means that all power batteries recovered from the 
consumer area are transported to the regional warehouse; Constraint (11) indicates that the 
power batteries recovered from the regional library are transported to the recovery and 
detection center; Constraints (12), (13) and (14) mean that the power batteries recovered by 
the recovery and detection center are transported to the treatment center, waste material 
treatment center and energy storage center respectively according to a certain probability after 
detection; Constraints (15) and (16) mean that the power batteries recovered by the treatment 
center are transported to the waste treatment center and the battery production plant 
respectively according to a certain probability after treatment; Constraints (17) and (18) 
represent the flow conservation of the recovery detection center and the treatment center 
respectively; Constraint (19) means that the sum of the received quantity and the original 
output of the battery manufacturer cannot exceed the upper limit of its capacity; Constraint (20) 
means that the receiving quantity of new energy vehicle manufacturing enterprises cannot 
exceed the upper limit of their capacity; Constraint (21) indicates that the receiving quantity of 
the area library cannot exceed its upper capacity limit; Constraint (22) indicates that the 
recycling quantity of the area library cannot exceed its upper capacity limit; Constraint (23) 
indicates that the recycling quantity of the recycling detection center cannot exceed its upper 
limit of capacity; Constraint (24) indicates that the recycling quantity of the processing center 
cannot exceed the upper limit of its capacity; Constraint (25) means that the recycling quantity 
of the waste treatment center cannot exceed its upper limit of capacity; Constraint (26) 
indicates that the recovery quantity of the energy storage center cannot exceed the upper limit 
of its capacity; Constraint (27) indicates that the sum of the probability of the number of power 
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batteries transported to other areas detected by the recovery detection center is 1; Constraint 
(28) indicates that the sum of the product probabilities processed by the processing center and 
transported to other areas is 1; Constraint (29) specifies 0-1 variables; Constraint (30) 
indicates that the decision variable is nonnegative. 

4. Proposed heuristic algorithm 

Previous studies have fully proved the effectiveness of particle swarm optimization algorithm 
in solving the optimization design problem of power battery logistics network of new energy 
vehicles, while the agent model based on response surface is relatively less used in this problem. 
When particle swarm optimization algorithm is used to deal with high-dimensional complex 
problems, the algorithm may converge prematurely. Therefore, this paper considers the 
combination of response surface model and particle swarm optimization algorithm, and 
designs an improved particle swarm optimization algorithm based on response surface model 
to improve the efficiency and quality of problem solving in this paper. The advantages of RBF 
response surface model are: (1) nonlinear fitting and strong local approximation ability; (2) 
Good autonomous learning ability and fast learning convergence. Particle swarm optimization 
algorithm and RBF response surface model can complement each other. At the beginning, 
particle swarm optimization algorithm is used for global development, and then its iterative 
information and optimal solution information are used to build RBF response surface model. 
Then, under the information exchange mechanism set up in this paper, by applying RBF 
response surface model to particle swarm optimization algorithm, we can maintain the 
powerful global search ability of particle swarm optimization algorithm, and also have the 
characteristics of efficient convergence of radial RBF response surface model, which can avoid 
the algorithm falling into local optimization, so as to improve the solution efficiency and 
solution quality. 

Therefore, the design idea is as follows Figure 2: 

START PSO RBF END

N

Generate initial solution

Reach the set number of 

iterations

Y

 
Figure 2:  Improved particle swarm optimization process based on response surface model 

Firstly, the standard particle swarm optimization algorithm is used to solve. When a certain 
number of iterations are met or the optimal solution is updated, certain rules are set according 
to the distance and fitness. M samples are selected from the initial sampling scheme samples 
and particle swarm optimization as the initial sample points of RBF. The distance evaluation 
adopts European distance: || ( ) ||i im md x x   , where mx   is the optimal solution. 

Then, according to the solution set of the input response surface model, that is, the sample 
points, the RBF model is constructed and solved iteratively. When the number of solutions 
based on the response surface model reaches the set optimal value or the number of updates of 
the current optimal solution reaches the set threshold, the sample points of the sample set are 
sorted from small to large according to their real evaluation value, and the first m sample 
outputs are taken as the population of particle swarm optimization algorithm. In addition to 
the termination principle shown in Figure 3, this paper also sets the overall maximum number 
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of iterations, that is, the sum of the total number of iterations of particle swarm optimization 
algorithm and the number of iterations based on response surface model. 

4.1. Encoding mode and decoding mode 

In this paper, the decision variables for the construction of each alternative function node are 
coded in the form of direct coding, as shown in Figure 4.4. According to the fact that there are 
three recovery and detection centers, two energy storage centers, two treatment centers and 
two waste disposal centers, an array with a length of 3 + 2 + 2 + 2 is set, in which 1 represents 
the establishment of the alternative function node and 0 represents the abandonment of the 
alternative function node. 

 
Figure 3:  Example of Encoding Mode and Decoding Mode 

The decoding form of this paper is shown in Figure 3. After assigning the 0-1 variable to each 
function node, when the first position of the recycling detection center array is 1, the processing 
capacity of the first recycling detection center is its original capacity, and when the second 
position of the recycling detection center array is 0, the processing capacity of the second 
recycling detection center is 0. 

4.2. PSO Algorithm Design 

When the improved particle swarm optimization algorithm based on RBF response surface 
model designed in this paper starts, first enter the particle swarm optimization part to generate 
the initial particles. Particle swarm optimization algorithm requires the randomness of particle 
positions, so that they can be dispersed in each position of the feasible region as much as 
possible. At the same time, considering the requirements of RBF for solution set, this paper 
forms N particles according to the initial sample generation scheme mentioned above. 

After generating the initial particles, the fitness value of each particle is solved as the initial 
individual optimal value, and the particle with the best fitness is selected as the group optimal 
solution. Then, the particles are updated according to the formula and the iteration of the 
particle swarm part is carried out until the end of the algorithm of the particle swarm part. 

The algorithm flow of particle swarm optimization designed in this paper is shown in Figure 4. 

As shown in the figure above, the algorithm of particle swarm optimization first determines 
whether it is the initial operation or returned by the algorithm based on response surface model. 
If it is the initial operation, the initial particles will be generated. Otherwise, set the initial local 
optimal value of each particle as the current particle fitness, and then iterate the algorithm 
according to the process of particle swarm optimization algorithm. In the iterative process of 
particle swarm optimization algorithm, its optimization rules make the motion of particles not 
tend to the inferior solution, that is, the inferior solution particles do not have the function of 
guiding the direction of group motion. In this paper, the fitness of not calculating the inferior 
solution is set to speed up the operation speed. The inferior solution that is not worth 
calculating is considered from the perspective of network traffic balance. For example, if the 
demand of consumer groups is known, the maximum recovery can be approximately obtained. 
Then, according to the establishment of each center, preliminarily calculate whether the traffic 
balance is satisfied, that is, the total recovery of a certain type of function node should be less 
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than the superposition value of the upper bound of the processing capacity of all function nodes 
of this type. When such particles are generated, they are repaired. Firstly, randomly select e 
positions with value of 0 in the particle solution, assign these positions to 1, and then evaluate 
the inferior solution until the inferior solution meets the requirements. After the above steps, 
it not only ensures that the position of particles does not change, but also saves the occupation 
of computing resources and reduces the running time of the algorithm. 

START

Whether to return from RBF algorithm

Generate initial particles Particle local optimal value pBESTi update

Calculate the target value of particles

Update individual optimization and group 

optimization

The group optimal value

 is not updated in successive T generations

END

Update particle position and 

velocity

N Y

Y

N

 
Figure 4:  Algorithm flow of PSO 

4.3. Algorithm design based on RBF response surface model 

When the particle swarm optimization algorithm converges prematurely, the particle swarm 
optimization algorithm will generate an initial solution set as the data set of RBF response 
surface model, and then carry out iterative optimization according to the algorithm flow based 
on response surface model. 

The iterative flow of the algorithm based on RBF response surface model designed in this paper 
is shown in Figure 5. 

As shown in the figure above, the algorithm based on response surface model designed in this 
paper mainly includes five steps: constructing and generating RBF model, constructing 
candidate points, evaluating candidate points, updating the optimal solution and solution set, 
and updating the disturbance probability. The disturbance probability is a dynamic decimal, 
which is the main parameter of candidate point generation. 

This paper considers two aspects to score the candidate points, one is the Euclidean distance 
between the candidate point and the current optimal solution point, and the other is the 
predictive evaluation value of RBF between the candidate node and the candidate node. The 
specific process is as follows: 
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Figure 5:  Algorithm flow of RBF 

 

Predictive value scoring criteria. According to the predicted values of all alternative points 
obtained by RBF model, the following scores can be given to each alternative point: 

min
max min

max min

( )
, if  

( )

1, otherwise

n n
n nS

n n n

S y S
S S

V y S S

 


 



                    (31)  

 

Among them,
min min { ( )}

nn y E nS S y , max max { ( )}
nn y E nS S y . 

Distance scoring criteria. According to the predicted values of all alternative points obtained by 
RBF model, the following scores can be given to each alternative point: 

 

max
max min

max min

( )
, if  

( )

1, otherwise

n n
n nD

n n n

D D y
D D

V y D D

 

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


                   (32)

 

Where ( )nD y  is the minimum distance between the candidate point ny E  and the point in the 

current sample point nI  set, with ( ) min
i nn I iD y y y 

y ,
min min { ( )}

nn y E nD D y , 
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max max { ( )}
nn y E nD D y

. 

Combined with the scoring criteria of predicted value and distance, the candidate points can be 
comprehensively scored: 

( ) ( ) (1 ) ( )S D

n n n n nV y w V y w V y                         (33) 

Where nw  is the weight coefficient. In practical application, each iteration nw  can take a 

random number in min max( , )n nw w , and min

nw  and max

nw are the minimum weight and maximum 

weight of the nth iteration respectively. Generally, 
min

nw  > 0.6 and 
max

nw  can be taken as 1. 

Because RBF algorithm takes a long time to build and update RBF model when the time cost of 

fitness function evaluation is small, the number of iterations of RBF should not be too large. 

5. Numerical Experiment 

After completing the model construction and algorithm design of the optimal design of the 
power battery supply recovery network of new energy vehicles considering uncertainty, this 
chapter designs numerical experiments on different scales to verify the effectiveness of the 
model and algorithm in this paper. The CPU of the experimental platform used in this paper is 
Intel Core i5 2.4GHz, the 64 bit operating system of windows10 is adopted, the small-scale 
example is solved by CPLEX 12.6.3, and the code is run in c# of visual studio 2019. 

5.1. Experimental Parameter Setting 

By referring to the data in the previous literature on the optimal design of power battery supply 
recycling logistics network of new energy vehicles, this paper sets the unit transportation cost 
between facilities as 0.33 yuan / ton kilometer. Assuming that the uncertainty obeys the normal 
distribution, the value of uncertain factors is approximately estimated, including the demand 
quantity of consumer groups, power battery recovery rate The probability that the power 
battery is transported to other functional nodes through the recovery detection center and 
processing center. Other parameters in the model, such as transportation distance and recovery 
cost, obey uniform distribution. The specific parameter settings are shown in table 5.1. 
According to the set parameter distribution function, this chapter randomly generates small-
scale and large-scale experimental data to carry out numerical experiments. 

Table 1: Experimental Parameter Setting 

Parameter Value Parameter Value 

𝑐𝑔ℎ 𝑐ℎ𝑖 𝑐𝑖𝑗  𝑐𝑗𝑘  𝑐𝑗𝑙  𝑐𝑗𝑚 𝑐𝑘𝑙 

𝑐𝑘𝑔 

( yuan / ton km) 

0.33 

𝑑𝑔ℎ 𝑑ℎ𝑖 𝑑𝑖𝑗 𝑑𝑗𝑘  𝑑𝑗𝑙  

𝑑𝑗𝑚 𝑑𝑘𝑙 𝑑𝑘𝑔 

(km) 

𝑈(5,25) 

𝑥𝑡𝑠(ton) 𝑁(500,50) 𝛽𝑘𝑙𝑠 𝑁(0.2,0.03) 
p0(yuan / ton) 𝑈(6000,10000) 𝛽𝑘𝑔𝑠 𝑁(0.8,0.03) 

𝑁𝑔(ton) 𝑈(5000,8000) 𝜃𝑠  𝑁(0.9,0.03) 
𝑁ℎ(ton) 𝑈(4000,8000) 𝑏𝑗(yuan) 𝑈(1500000,1800000) 
𝑁𝑖(ton) 𝑈(1000,3000) 𝑏𝑘(yuan) 𝑈(1400000,1600000) 
𝑁𝑗(ton) 𝑈(4000,6000) 𝑏𝑙(yuan) 𝑈(300000,500000) 
𝑁𝑘(ton) 𝑈(2000,3000) 𝑏𝑚(yuan) 𝑈(100000,20000) 
𝑁𝑙(ton) 𝑈(1000,2000) 𝑓𝑗(yuan / ton) 𝑈(1000,2000) 
𝑁𝑚(ton) 𝑈(3000,4000) 𝑓𝑘(yuan / ton) 𝑈(2000,3000) 
𝛼𝑗𝑘𝑠  𝑁(0.3,0.02) 𝑓𝑙(yuan / ton) 𝑈(2000,3000) 
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𝛼𝑗𝑙𝑠  𝑁(0.2,0.02) 𝑓𝑚(yuan / ton) 𝑈(1000,2000) 
𝛼𝑗𝑚𝑠  𝑁(0.5,0.02)   

5.2. Small-scale Example Experiment 

In the small-scale example experiment, each group of examples in each experiment randomly 
generates 10, 30 and 50 scenes of different sizes. In this section, CPLEX and the improved 
particle swarm optimization algorithm based on RBF (PSO + RBF) are used to solve the 
examples respectively. By comparing the solution results and running time of the two, the 
effectiveness of the improved particle swarm optimization algorithm for solving the problem 
in this paper is verified. The comparison results of small-scale example experiments are shown 
in Table 2. 

Table 2: Comparison Results of Small-scale Examples 

The Scale of Example  CPLEX PSO+RBF 
gap 

t-i-j-k-m-l-g-h 
Number of 

Scenes 
obj1 Time obj2 Time 

6-4-2-2-2-2-1-2 

10 28721067 1 28765636 4 0.15% 

30 29237636 8 29257299 9 0.07% 

50 28901078 27 28919330 14 0.06% 

8-6-2-2-2-2-1-2 

10 36512774 6 36720533 5 0.57% 

30 37584289 25 37726897 13 0.38% 

50 37685342 68 37803131 27 0.31% 

10-8-2-2-2-2-1-2 

10 46788323 25 46941617 7 0.33% 

30 46505641 92 46700609 26 0.42% 

50 46516474 311 46699805 38 0.39% 

12-10-3-3-3-3-2-2 

10 55601562 92 55714283 16 0.20% 

30 56474725 579 56580912 39 0.19% 

50 56206455 1435 56353639 55 0.26% 

14-12-4-4-4-4-3-3 

10 65550236 378 65729058 20 0.27% 

30 66638855 3523 66762613 66 0.19% 

50 64990457 6681 65114409 96 0.19% 

Average gap 0.27% 

Note：（1）gap = (obj2 - obj1) / obj1；（2）The unit of solution time is seconds；（3）The 

value in t-i-j-k-m-l-g-h represents the number of network nodes。 

It can be seen from the small-scale numerical experiment results in the table above: 

(1) When the number of different functional nodes in the network is fixed, that is, the network 
size remains unchanged, with the gradual increase of the number of randomly generated scenes, 
the solution time of CPLEX and the improved particle swarm optimization algorithm gradually 
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increases, which shows that increasing the number of uncertain scenes will increase the 
difficulty of model solution and the solution time of examples. 

(2) In terms of solution time, when the scale of the example is small, the solution time of CPLEX 
is shorter than that of the improved particle swarm optimization algorithm. However, when the 
scale of the example increases gradually, the solution time of CPLEX increases rapidly and 
gradually loses the time advantage. At this time, when there are 4 production centers and 4 
improved energy storage centers, it takes only 4 seconds to solve the problem of 4 new energy 
storage centers and 4 improved energy storage centers. At this time, when there are 4 
production centers and 4 improved energy storage centers, it takes only 4 seconds to solve the 
problem. The experimental results show that the improved particle swarm optimization 
algorithm based on RBF performs well in solving the optimization design problem of power 
battery supply recovery network of new energy vehicles studied in this paper. 

(3) In terms of solution quality, based on the above small-scale numerical experiments, the 
average gap value between the optimal solution obtained by the improved particle swarm 
optimization algorithm based on RBF and the optimal solution obtained by CPLEX is 0.27%, 
indicating that the improved particle swarm optimization algorithm has high solution quality 
for the mixed integer stochastic programming model constructed in this paper, which proves 
that the algorithm can find a more satisfactory solution in a short time. 

5.3. Large-scale Numerical Experiment 

With the gradual increase of the number of network nodes and random scenes, the difficulty of 
solving the problem will continue to grow, and CPLEX will be difficult to solve in a reasonable 
time. In the small-scale numerical experiment, the solution time of CPLEX is nearly 2 hours, 
which shows that CPLEX, an accurate solution software, will not be applied to the solution of 
larger-scale examples. In this section, by setting up large-scale example experiments, particle 
swarm optimization (PSO) and improved particle swarm optimization algorithm based on RBF 
(PSO + RBF) are used to solve the examples respectively, and the objective function value and 
solution time of the two are compared to further verify the effectiveness of the improved 
particle swarm optimization algorithm based on RBF. The solution results are shown in table 
5.3. 

Table 3: Comparison Results of Large-scale Examples 

The Scale of Example PSO+RBF PSO 
gap 

t-i-j-k-m-l-g-h 
Number 
of Scenes 

obj1 Time obj2 Time 

20-18-16-14-14-16-4-
6 

60 93133259 288 94800426 416 1.76% 

100 93177248 478 94716346 683 1.62% 

150 92820010 715 94595515 1009 1.88% 

30-28-25-23-23-25-6-
8 

60 140575731 555 143247694 778 1.87% 

100 140827864 906 144054073  1289 2.24% 

150 140229093 1389 143878760 1949 2.54% 

40-38-30-28-28-30-6-
8 

60 185663344 755 190717623 1067 2.65% 

100 186449720 1257 190939583 1788 2.35% 

150 185660184 1895 190648680 3805 2.62% 
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50-48-40-35-35-40-8-
10 

60 232373805 1329 242139825 2753 4.03% 

100 233379564 1712 241971541 3156 3.55% 

150 232635303 3022 241608264 7142 3.71% 

60-58-50-45-45-50-8-
10 

60 278318668 1990 294304858 2938 5.43% 

100 279091461 3311 296289206 4681 5.80% 

150 279901280 4771 296210609 9879 5.51% 

Average gap 3.17% 

Note：（1）gap = (obj2 - obj1) / obj1；（2）The unit of solution time is seconds；（3）The 

value in t-i-j-k-m-l-g-h represents the number of network nodes。 

(1) Comparison of solution quality of large-scale examples 

As shown in the above table, the average difference between the results of the standard particle 
swarm optimization algorithm and the improved particle swarm optimization algorithm based 
on response surface model is 3.17%, and the gap value tends to rise with the increase of 
network scale. Because when the particle swarm optimization algorithm iterates to the later 
stage, the particles will gradually close to the area where the group optimal solution is located, 
so the diversity between particles is lost and it is easy to fall into the local optimal solution. The 
improved particle swarm optimization algorithm based on response surface model can not only 
maintain the powerful global search ability of particle swarm optimization algorithm, but also 
have the characteristics of efficient convergence of response surface model, so that the 
algorithm can carry out circular conversion between global search and local search, so as to 
achieve complementary effect, so as to improve the solution quality of the algorithm. 

(2) Comparison of solution time of large-scale examples 

In order to more intuitively reflect the difference in solution time between the improved 
particle swarm optimization algorithm based on response surface model and the standard 
particle swarm optimization algorithm, this paper draws a broken line diagram to compare the 
solution time between them. 

 
Figure 6 :Comparison Diagram of Solution Time 

As shown in Figure 6, the dot polyline and square dot polyline respectively represent the 
solution time of the improved particle swarm optimization algorithm and the standard particle 
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swarm optimization algorithm based on the response surface model for different sizes and 
scene numbers. 

As can be seen from the above figure, the improved particle swarm optimization algorithm 
based on response surface model can maintain a fast convergence speed in most calculation 
examples, and the solution time is less than that of standard particle swarm optimization 
algorithm. With the increase of the network scale and the number of scenarios, the gap between 
the two solution times also shows an upward trend. It can be concluded that applying the 
response surface model to the improved particle swarm optimization algorithm in this paper 
can effectively shorten the solution time of the algorithm, save the occupation of computing 
resources and improve the solution efficiency of the algorithm. 

In summary, the improved particle swarm optimization algorithm based on response surface 
model designed in this paper combines the characteristics of response surface model and 
particle swarm optimization algorithm, which can effectively solve the optimization design 
problem of large-scale and high latitude complex power battery supply recovery network. 

6. Conclusion 

By integrating the relevant recycling modes of power batteries in the current industry, and 
combining the two operation links of power battery supply and recycling of new energy 
vehicles into a whole, this paper carries out the optimal design of supply recycling network 
under the integrated mode. Based on the previous deterministic research, considering the 
influence of various uncertain factors in the process of supply and recovery on the supply and 
recovery activities of new energy vehicle power batteries, a mixed integer stochastic 
programming model for the optimal design of new energy vehicle power battery supply 
recovery network considering uncertainty is constructed, and a particle swarm optimization 
algorithm is designed to solve the model, The correctness of the model and the effectiveness of 
the algorithm are verified by designing different scale examples. According to the number of 
scenarios and the number of consumer groups and facility nodes in the logistics network, the 
scale of the example is gradually increased from less to more, and small-scale example 
experiments and large-scale example experiments are designed successively. Through example 
experiments, this paper verifies the difficulty of solving the power battery supply recovery 
network optimization problem considering uncertainty. At the same time, it also proves that 
the improved particle swarm optimization algorithm based on response surface model can 
obtain the satisfactory solution of this problem in a reasonable time, and improve the solution 
efficiency and solution quality. 
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