
Scientific Journal of Intelligent Systems Research Volume 3 Issue 9, 2021

ISSN: 2664-9640

334

A Metamodel-Assisted Particle Swarm Optimization for
Expensive Real-World Problems

Chongzheng Na, Huixin Liu *, He Li

School of Information and Control, Shenyang Institute of Technology, China

* Corresponding Author

Abstract

In the recent decades, researches of metamodel-assisted optimization algorithms, also
known as surrogate-assisted optimization algorithms, were rapidlly proposed for
solving many kinds of expensive real-world problems, which are generally non-
differential, multi-modal and noisy. Therefore, evolutionary algorithms (EAs), which are
gradient-free and black-box friendly, are likely to be the promising approaches.
Nevertheless, there are still challenges that all these algorithms require a big number of
evaluation calls before achieving solution close to the global optimum. As a result, a
bunch of approximation-based algorithms were proposed with the propose of avoiding
the costly evaluations. In this paper, we present a brief investigation of these
approximation-based researches. And a metamodel-assisted dual swarm particle swarm
optimization is proposed. Experimental results obtained on benchmark functions from
Black-box optimization benchmarking (BBOB) are presented.

Keywords

Metamodel-assisted optimization, Evolutionary algorithms, Particle swarm
optimization, Real-world problem, Black-box optimization benchmarking.

1. Introduction

Typically, the goal of real-world engineering optimization problems is to carry out the optimum
designs, parameters or characteristics under specified design criteria and time limit. Many of
them, such as manufacturing engineering [1], food industry [2], steel casting [3] and drug
design [4], require significant resources for evaluations which are normally black-boxing,
experiment-based or simulation-based. Black-box problems are a group of problems with a
least one unknown function that given a list of inputs, corresponding outputs can be obtained
without knowing its internal structure or expression [5]. Moreover, optimization problems
containing functions that discontinue, non-smooth, noisy or lack of gradient information are
generally considered as black-boxing due to they cannot apply traditional gradient-based
mathematical programming methods[6]. Evolutionary algorithms are widely used gradient-
free methods to solve black-box problems. Unfortunately, these kinds of algorithms require a
big number of evaluation calls before achieving solution close to the global optimum, which is
generally unaffordable if the problems are experiment-based or simulation-based as
mentioned above. For instance, photobioreactor design [7], wind energy evaluation [8] and
agricultural industry design [9], which are computational fluid dynamics (CFDs) based, cost
minutes or hours to run the expensive computationally analysis code for a single evaluation call.
Hence, metamodel-assisted algorithms, also known as surrogate-assisted algorithms, were
proposed, focusing to reduce computational time in evolutionary optimizations of real-world
expensive problems by using approximation functions along with costly real functions.

In recent years, various researches about metamodel-assisted algorithms were reported. [10]
proposed a framework using artificial neural network (ANN) and covariance matrix

Scientific Journal of Intelligent Systems Research Volume 3 Issue 9, 2021

ISSN: 2664-9640

335

adaptation evolution strategy (CMA-ES). [11] employed radial basis function (RBF) based
hybrid genetic algorithm (GA) for solving high-fidelity engineering design problems. [12]
combined gaussian process regression (GPR) and differential evolution (DE) for medium scale
expensive optimization problems. [13] applied fitness inheritance surrogate model to real-
coded genetic algorithms. [14] introduced a method with kriging and particle swarm
optimization. [15] introduced a two-layer surrogate-assisted particle swarm optimization
algorithm. [16] presented a gaussian process regression and radial basis function hybrid
assisted evolutionary algorithm. [17] introduced self-adaptive evolution strategies bases local
support vector machine (SVM) constraint surrogate models.

These researches proved that metamodel-assisted methods greatly increase the power of the
optimizations. The same number of evaluations could be done to get closer to the global
optimum or to solve more difficult optimization problems.[18] For all that there are
encouraging efforts, metamodel-assisted algorithms have their own disadvantage, which is
known as curse of uncertainty [19]. Researchers suggest that the approximation error of
approximation models may lead algorithms converge to false optima. Still and all, the
uncertainty does not always harm, due to its insensitivity to multimodal or noisy landscape of
the complex problem. Hence, making use of the advantage and overcoming the disadvantage
are constantly research direction of this topic.

2. Particle Swarm Optimization

Particle swarm optimization, which was firstly proposed in 1995 [20], is a swarm theory based
optimization algorithm for solving continuous nonlinear problems, which can be define as
follow:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝒙) (1)

𝑠. 𝑡. 𝒙𝑙𝑏 ≤ 𝒙 ≤ 𝒙𝑢𝑏 (2)

where 𝒙 is the decision variable vector, 𝑓(𝒙) is the objective function, 𝒙𝑙𝑏 and 𝒙𝑢𝑏 are the upper
and lower boundary vectors of 𝒙. In this algorithm, a group of particles start randomly in the
search space. Each of the particles has its own position and velocity and is guided by two bests:
one is the particle best (pbest), which records the best position that one particle has found, the
other is the global best (gbest), which record the best position that the whole swarm has found.
Updating rules at iteration 𝑡 → 𝑡 + 1 can be defined as:

𝒗𝑖
𝑡+1 = 𝒗𝑖

𝑡 + 𝑐1𝑟1(𝒑𝒃𝒆𝒔𝒕𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝒈𝒃𝒆𝒔𝒕𝑡 − 𝒙𝑖
𝑡) (3)

𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝒗𝑖
𝑡+1 (4)

where 𝒙𝑖
𝑡 is the position of particle 𝑖 at iteration 𝑡, 𝒗𝑖

𝑡 is the velocity of particle 𝑖 at iteration 𝑡,
𝒑𝒃𝒆𝒔𝒕𝑖

𝑡 is the best historical position of particle 𝑖 before iteration 𝑡, 𝒈𝒃𝒆𝒔𝒕𝑡 is the best historical
position of the whole swarm before iteration 𝑡, 𝑐1 and 𝑐2 are the acceleration coefficients, 𝑟1
and 𝑟2 are random numbers in the range (0,1].

Algorithm 1: The original particle swarm optimization

Initialize particle position 𝒙 and velocity 𝒗 randomly within boundary

For each particle i in the swarm

 𝑷𝒃𝒆𝒔𝒕𝒊 = 𝒙𝒊

End For

While not stopping criterion is not met

 For each particle i in the swarm

 Evaluate particle i

 If i is the new particle best

 update 𝑷𝒃𝒆𝒔𝒕𝒊 = 𝒙𝒊

Scientific Journal of Intelligent Systems Research Volume 3 Issue 9, 2021

ISSN: 2664-9640

336

 End IF

 If i is the new global best

 update 𝑮𝒃𝒆𝒔𝒕 = 𝒙𝒊

 End IF

 Update velocity using (3)

 Update position using (4)

 End For

End While

In spite of simplicity and efficiency, the original PSO has its own flaws that the search sometimes
traps into local optimum, and lack of convergence prove. Hence, several variants of PSO have
been proposed, such as PSO with neighborhood operator to improve its exploration ability[21],
inertia weight and constriction factor based method to insure convergence[22] [23] [24]. The
chosen algorithm in this paper is PSO with inertia weight, which particles updating criterion
can be altered as:

𝒗𝑖
𝑡+1 = 𝑤𝒕𝒗𝑖

𝑡 + 𝑐1𝑟1(𝒑𝒃𝒆𝒔𝒕𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝒈𝒃𝒆𝒔𝒕𝑡 − 𝒙𝑖
𝑡) (5)

𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝒗𝑖
𝑡+1 (6)

where 𝑤𝑡 is inertia weight. Normally, the inertia weight changes linearly[25], reducing from
𝑤𝑚𝑎𝑥 to 𝑤𝑚𝑖𝑛 over the search iterations:

𝑤𝑡 = 𝑤𝑚𝑎𝑥 −
𝑡(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝑡𝑚𝑎𝑥

(7)

where 𝑡𝑚𝑎𝑥 is the designed max iterations. 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥 are usually set to 0.4 and 0.9.

3. Support Vector Regression

Support vector machine (SVM) is a kernel-based learning method for solving classification and
regression [26].The regression form of SVM are proposed in 1998, which is called ɛ-SVR[27].
The goal is to find a function 𝑓(𝑥) that has at most ε deviation from the actually obtained targets
𝑦𝑖 for all the training data, and at the same time is as flat as possible[28]. The standard form of
support vector regression is[29]:

𝑚𝑖𝑛
𝑤,𝑏,𝜉,𝜉∗

1

2
𝒘𝑇𝒘 + 𝐶 ∑ 𝜉𝑖

𝑙

𝑖=1

+ 𝐶 ∑ 𝜉𝑖
∗

𝑙

𝑖=1

 subject to 𝒘𝑇𝜙(𝒙𝑖) + 𝑏 − 𝑧𝑖 ≤ 𝜖 + 𝜉𝑖

𝑧𝑖 − 𝒘𝑇𝜙(𝒙𝑖) − 𝑏 ≤ 𝜖 + 𝜉𝑖
∗,

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1, … , 𝑙.

(8)

The dual problem is

𝑚𝑖𝑛
𝛼,𝛼∗

1

2
(𝜶 − 𝜶∗)𝑇𝑸(𝜶 − 𝜶∗) + 𝜖 ∑(𝛼𝑖 + 𝛼𝑖

∗)

𝑙

𝑖=1

+ ∑ 𝑧𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

 subject to 𝒆𝑇(𝜶 − 𝜶∗) = 0

0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶, 𝑖 = 1, … , 𝑙

(9)

𝑸 is a matrix, 𝑸𝒊𝒋 = 𝐾(𝒙𝒊, 𝒙𝒋) = 𝜙(𝒙𝑖)𝑇 𝜙(𝒙𝑗) , and 𝐾(𝑥, 𝑥′) is the kernel function, which is

supposed to be given priority. The most commonly used kernel function is the Gaussian Kernel:

𝐾(𝒙, 𝒙′) = 𝑒
−

‖𝑥−𝑥′‖
2

2𝜎2 (10)

 After solving (9) the approximate function can be given:

Scientific Journal of Intelligent Systems Research Volume 3 Issue 9, 2021

ISSN: 2664-9640

337

𝑓(𝑥) = ∑(−𝑎𝑖 + 𝑎𝑖
∗)

𝑙

𝑖=1

𝐾(𝑥𝑖, 𝑥) + 𝑏 (11)

𝑙 is the total sample number.

4. Meta-model Assisted Dual Swarm Particle Swarm Optimization
(MADSPSO)

4.1. The Framework of MADSPSO

Figure 1: 2D case: meta-models are insensitivity to tiny local optimum, but could lead search

trapping into unexpected local optimum

Even though meta-model assisted algorithm could strikingly decrease real functions evaluated
of expensive problems, the way to retain exploration ability is constantly an open issue. The
uncertainty produced by meta-models brings both positive and negative efforts [19]. For
instance, for many noisy and multi-model problems, if several particles of PSOs are guided by
meta-models, the particles may smooth the tiny local optimum out, boosting exploration in the
early stage, due to the uncertainty is insensitivity to the tiny changes of the original functions.
At the same time, the uncertainty of meta-models also creates false optimum, which could lead
the search trapping into unexpected local optimum. The interested reader is referred to the
relevant researches [11][19].

The proposed algorithm includes two swarms, one is the classic swarm, which is similar to the
original PSO, evaluating the real function, the other is called the surrogate swarm, which is
guided by the meta-model approximate function. Like other meta-model assisted algorithms,
the proposed method is divided into two phases. In the first phase, normally called initialization
phase, the classic swarm initializes as same as the original PSO algorithm with inertia weight
set to 𝑤𝑚𝑎𝑥 , position 𝒙 and velocity 𝒗 randomly within boundary, and records the real-function
evaluated (𝑥, 𝑓(𝑥)) before the global database 𝐷𝑔 meet the minimum requirement. In the main

phase, along with the classic swarm, the surrogate swarm start to run bases the meta-model
constructed using the local database 𝐷𝑙 ,which is a subset of the global database 𝐷𝑔 under some

certain criteria. The initial position 𝒙 and velocity 𝒗 of the surrogate swarm are following
distribution of the classic swarm. The dual swarms run parallelly and asynchronously. While
the classic swarm iterates once, the surrogate swarm iterates multiple times, contributing its
best swarms to the classic swarm. The validity of the meta-model can is verified by using the
current classic swarm particles. Specifically, for various real-world application that priori
knowledge or history data is available, the algorithm can start at second phase.

Scientific Journal of Intelligent Systems Research Volume 3 Issue 9, 2021

ISSN: 2664-9640

338

Figure 2: Structure of the MADSPSO

4.2. Database Management

All the real functions evaluated are supposed to be recorded in the global database. The meta-
model constructed with global database is called global model. Though has the remarkable
ability of exploring the decision space, the global model also has negative impacts. As the search
proceeding, approximation accuracy of the global model could be an issue due to the data
samples that the global model used distribute in a wide search space. Likewise, getting more
data samples generally means more time to train meta-model, which could be geometrically
expanding in many approximation strategies. Hence, a subset of the global database is selected
in various researches. The meta-model using this more ‘local’ database is defined as local model.
The proposed algorithm uses the following strategy:

𝑥𝑚𝑖𝑛𝑑
𝑡 = min

𝑖∈𝐼
(𝑥𝑖𝑑

𝑡) (12)

𝑥𝑚𝑎𝑥𝑑
𝑡 = max

𝑖∈𝐼
(𝑥𝑖𝑑

𝑡) (13)

Where 𝐼 is the classic swarm set. The boundary of local database is determined by 𝑥𝑚𝑖𝑛𝑑
𝑡 and

𝑥𝑚𝑎𝑥𝑑
𝑡 of last 𝑚 generations.

𝑙𝑑𝑒𝑡𝑎𝑑
𝑡 = max

𝑡 ′=𝑡−𝑚+1,𝑡−𝑚+2,…,𝑡
(𝑥𝑚𝑎𝑥𝑑

𝑡′
) − min

𝑡 ′=𝑡−𝑚+1,𝑡−𝑚+2,…,𝑡
(𝑥𝑚𝑖𝑛𝑑

𝑡′
) (14)

𝑙𝑚𝑖𝑛𝑑
𝑡 = min

𝑡 ′=𝑡−𝑚+1,𝑡−𝑚+2,…,𝑡
(𝑥𝑚𝑖𝑛𝑑

𝑡′
) − 𝛼(𝑙𝑑𝑒𝑡𝑎𝑑

𝑡) (15)

𝑙𝑚𝑎𝑥𝑑
𝑡 = max

𝑡 ′=𝑡−𝑚+1,𝑡−𝑚+2,…,𝑡
𝑥𝑚𝑎𝑥𝑑

𝑡′
+ 𝛼(𝑙𝑑𝑒𝑡𝑎𝑑

𝑡) (16)

Where 𝛼 is a constant that normally in the range [0,2]. Finally, the local database 𝐷𝑙 can be
defined as:

𝐷𝑙
𝑡 = {(𝑥, 𝑓(𝑥))|(𝑥, 𝑓(𝑥)) ∈ 𝐷𝑔

𝑡 , 𝑙𝑚𝑖𝑛𝑑
𝑡 < 𝑥𝑑 < 𝑙𝑚𝑎𝑥𝑑

𝑡 } (17)

A larger 𝛼 and a larger 𝑚 mean more ‘global’ the local model is. Occasionally, 𝑎 could be relax
until the samples of 𝐷𝑙

𝑡 reach minimum requirement 𝑛𝑙.

𝑎𝑛𝑒𝑤 = 𝜏𝑎𝑜𝑙𝑑

Scientific Journal of Intelligent Systems Research Volume 3 Issue 9, 2021

ISSN: 2664-9640

339

𝜏 could be simply set to 1.1.

4.3. Meta-model Management

As the search progressing, the differences between particles distribution and train set
distribution will be getting bigger. Approximation accuracy of the meta-model is supposed to
be tested. Evaluating the mean square error (MSE) is the most commonly method. Nevertheless,
as [30] suggested, for ranking-based algorithms like PSOs and EAs, sometimes, approximation
model that has a large approximation error but are adequately good for evolutionary search.
Because in these algorithms, evolutionary behaviors such as selection or gbest alternating, only
compare the ranking of solutions. Therefore, in this paper, a ranking-based error function is
proposed to evaluate accuracy of the current meta-model:

𝑒𝑟𝑟 =
2

𝑁(𝑁 − 1)
∑ ∑ ((𝑓(𝑥𝑖) < 𝑓(𝑥𝑗)) 𝑥𝑜𝑟 (𝑓(𝑥𝑖) < 𝑓(𝑥𝑗)))

𝑖<𝑗<𝑁1<𝑖<𝑁

(18)

𝑎 𝑥𝑜𝑟 𝑏 = {
0 𝑖𝑓 (𝑎 = 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑏 = 𝑡𝑟𝑢𝑒) 𝑜𝑟 (𝑎 = 𝑓𝑎𝑙𝑠𝑒 𝑎𝑛𝑑 𝑏 = 𝑓𝑎𝑙𝑠𝑒)

1 𝑖𝑓(𝑎 = 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑏 = 𝑓𝑎𝑙𝑠𝑒) 𝑜𝑟 (𝑎 = 𝑓𝑎𝑙𝑠𝑒 𝑎𝑛𝑑 𝑏 = 𝑡𝑟𝑢𝑒)
(19)

𝑥𝑖 and 𝑥𝑗 are different particles in the current classic swarm. 𝑥𝑜𝑟 is the exclusive-or operator.

Obviously, 𝑒𝑟𝑟 = 0 means that the order of 𝑓(𝑥) and 𝑓(𝑥) are exactly the same on the test set,

and the meta-model are most likely trustworthy. Instead, if 𝑒𝑟𝑟 = 1 means 𝑓(𝑥) and 𝑓(𝑥) are
in reverse order on the test set. A hyper parameter 𝑒𝑟𝑟𝑠 is supposed to be determined in
purpose of deciding whether the meta-model is still accurate enough, or a new meta-model of
a more local dataset is ought to be built.

Algorithm 2: Database and Meta-model Management

Triggered when the classic swarm finished one .

Record the (𝑥, 𝑓(𝑥)),that the classic swarm newly evaluated, to global database
𝐷𝑔.

Calculate 𝑒𝑟𝑟 using (18)(19).

IF 𝑒𝑟𝑟 > 𝑒𝑟𝑟𝑠

 Calculate 𝐷𝑙
𝑡 using (12)-(17).

 WHILE 𝑐𝑟𝑎𝑑(𝐷𝑙
𝑡) < 𝑛𝑙 and 𝑐𝑟𝑎𝑑(𝐷𝑙

𝑡) ≠ 𝑐𝑟𝑎𝑑(𝐷𝑔
𝑡)

 Update 𝑎𝑛𝑒𝑤 = 𝜏𝑎𝑜𝑙𝑑 .

 Calculate 𝐷𝑙
𝑡 using (12)-(17).

 END WHILE

 Train new meta-model bases new 𝐷𝑙
𝑡.

END IF

5. Benchmark Results

In this section, the Rosenbrock benchmark function is chosen to evaluate the proposed
algorithm. The Rosenbrock benchmark function, also referred to as the Valley or Banana
function, is one of the most popular test problems for both black-boxed or gradient-based
optimization algorithms. The n dimensions Rosenbrock benchmark function can be described
as:

𝑓(𝑥) = ∑(100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2)

𝑑−1

𝑖=1

(20)

Scientific Journal of Intelligent Systems Research Volume 3 Issue 9, 2021

ISSN: 2664-9640

340

This function is unimodal, and the global minimum lies in a narrow, parabolic valley. However,
even though this valley is easy to find, convergence to the minimum is difficult. The global
minimum is 𝑓(𝑥∗) = 0 at 𝑥∗ = (1,1, … ,1).

Table.1 and Figure.3 show the comparison between the original CPSO and the proposed
algorithm (PA). Both results are the average of 20 times computations.

Table 1: Results of the original CPSO and the proposed algorithm

 Best Worst Average Std

PSO(t=5000) 1.49e00 2.31e02 6.22e01 5.82e01

PA (t=5000) 5.02e00 8.80e01 8.17e00 5.70e00

PSO(t=10000) 8.66e-1 9.95e01 2.27e01 2.20e01

PA (t=10000) 3.98e00 7.06e01 5.64e00 2.31e00

Figure 3: Average fitness comparison

The meta-model starts to work as soon as the global database has collected 2000 samples at
least. However, it seems that the meta-model assisting does little influence before about 3500
real function evaluations. The reason is that at early stage of the algorithm, the particles spread
in vast range of the decision space. It is difficult to collect enough samples to build accurate
meta-model. The best particles that meta-model reporting, are with bigger bias than latter
stage. In the proposed algorithm, those particles would be abandoned, and do no negative
impact of the search process. With the algorithm progressing, the efficient local model could be
built and continuously contribute solution to the main swarm. Those solutions could be used
for replacing the particles in the main swarm and the search could be accelerated. Also, it is
believed that the exploration ability is improved. The reason is every time when the meta-
model reconstructs, a new surrogate swarm must be built basing the distribution of the main
swarm particles. This process achieves the same effect as many PSO variants with restart
strategy, which were proved to be effective methods to improve the exploration ability of
algorithm.

Scientific Journal of Intelligent Systems Research Volume 3 Issue 9, 2021

ISSN: 2664-9640

341

6. Conclusion

The MADSPSO is proposed to solve real-world expensive optimization problems. The key
feature is building a meta-model-based swarm, which continuously try to contribute good
solutions to the main PSO swarm. This swarm runs separately and update itself using the
computing results of the main PSO swarm, ensuring that the extra model does almost no
negative impact to the searching progress. A ranking function is used to evaluate the quality of
meta-model, that could avoid the negative impact of system bias, since for the separately
running meta-model swarm the tendency of the fitness is more important than the exact
function value. Experimental result shows the proposed algorithm could effectively accelerate
the search speed and improve the exploration ability.

However, these are much work to do in the future research. The preparing stage is too long
comparing the other model-based algorithm. The main swarm will not accept meta-model-
based results unless they are good enough. Effective strategy is needed to do in the future work.
Also, the resampling method of the surrogate swarm could be improved, many restart strategy
based algorithms could be referred.

References

[1] Z. F. Wang, M. Yao, X. B. Zhang, and X. D. Wang, “Optimization Control for Solidification Process of
Secondary Cooling in Continuous Casting Steel,” Appl. Mech. Mater., vol. 263–266, pp. 822–827,
2013.

[2] B. Xia and D.-W. Sun, “Applications of computational fluid dynamics (CFD) in the food industry: a
review,” Comput. Electron. Agric., vol. 34, no. 1–3, pp. 5–24, 2002.

[3] X. C. Luo and C. Z. Na, “GA-CDFM Based Hybrid Optimization Method for Steelmaking Scheduling
and Caster Operation,” Adv. Mater. Res., vol. 424–425, pp. 994–998, 2012.

[4] I. D. Kuntz, “Structure-Based Strategies for Drug Design and Discovery,” Science, vol. 257, no. 5073,
pp. 1078–1082, Aug. 1992.

[5] S. Shan and G. G. Wang, “Survey of modeling and optimization strategies to solve high-dimensional
design problems with computationally-expensive black-box functions,” Struct. Multidiscip. Optim.,
vol. 41, no. 2, pp. 219–241, Mar. 2010.

[6] L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: a review of algorithms and comparison
of software implementations,” J. Glob. Optim., vol. 56, no. 3, pp. 1247–1293, 2013.

[7] A. Soman and Y. Shastri, “Optimization of novel photobioreactor design using computational fluid
dynamics,” Appl. Energy, vol. 140, pp. 246–255, Feb. 2015.

[8] A. Z. Dhunny, M. R. Lollchund, and S. D. D. V. Rughooputh, “Wind energy evaluation for a highly
complex terrain using Computational Fluid Dynamics (CFD),” Renew. Energy, vol. 101, pp. 1–9, Feb.
2017.

[9] T. Norton, D.-W. Sun, J. Grant, R. Fallon, and V. Dodd, “Applications of computational fluid dynamics
(CFD) in the modelling and design of ventilation systems in the agricultural industry: A review,”
Bioresour. Technol., vol. 98, no. 12, pp. 2386–2414, Sep. 2007.

[10] Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for evolutionary optimization with approximate
fitness functions,” IEEE Trans. Evol. Comput., vol. 6, no. 5, pp. 481–494, Oct. 2002.

[11] Y. S. Ong, P. B. Nair, A. J. Keane, and K. W. Wong, “Surrogate-Assisted Evolutionary Optimization
Frameworks for High-Fidelity Engineering Design Problems,” in Knowledge Incorporation in
Evolutionary Computation, Y. Jin, Ed. Berlin, Heidelberg: Springer, 2005, pp. 307–331. Accessed:
May 20, 2021. [Online]. Available: https://doi.org/10.1007/978-3-540-44511-1_15.

[12] B. Liu, Q. Zhang, and G. G. Gielen, “A Gaussian process surrogate model assisted evolutionary
algorithm for medium scale expensive optimization problems,” IEEE Trans. Evol. Comput., vol. 18,
no. 2, pp. 180–192, 2013.

[13] L. G. Fonseca, A. C. Lemonge, and H. J. Barbosa, “A study on fitness inheritance for enhanced
efficiency in real-coded genetic algorithms,” in 2012 IEEE Congress on Evolutionary Computation,
2012, pp. 1–8.

[14] M. D. Parno, T. Hemker, and K. R. Fowler, “Applicability of surrogates to improve efficiency of

Scientific Journal of Intelligent Systems Research Volume 3 Issue 9, 2021

ISSN: 2664-9640

342

particle swarm optimization for simulation-based problems,” Eng. Optim., vol. 44, no. 5, pp. 521–
535, 2012,

[15] C. Sun, Y. Jin, J. Zeng, and Y. Yu, “A two-layer surrogate-assisted particle swarm optimization
algorithm,” Soft Comput., vol. 19, no. 6, pp. 1461–1475, Jun. 2015.

[16] Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum, “Combining Global and Local Surrogate Models
to Accelerate Evolutionary Optimization,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 37,
no. 1, pp. 66–76, Jan. 2007.

[17] J. Poloczek and O. Kramer, “Local SVM Constraint Surrogate Models for Self-adaptive Evolution
Strategies,” in KI 2013: Advances in Artificial Intelligence, Berlin, Heidelberg, 2013, pp. 164–175.

[18] R. T. Haftka, D. Villanueva, and A. Chaudhuri, “Parallel surrogate-assisted global optimization with
expensive functions – a survey,” Struct. Multidiscip. Optim., vol. 54, no. 1, pp. 3–13, Jul. 2016.

[19] D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff, “Generalizing Surrogate-Assisted Evolutionary
Computation,” IEEE Trans. Evol. Comput., vol. 14, no. 3, pp. 329–355, Jun. 2010.

[20] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in MHS’95. Proceedings
of the Sixth International Symposium on Micro Machine and Human Science, 1995, pp. 39–43.

[21] P. N. Suganthan, “Particle swarm optimiser with neighbourhood operator,” in Proceedings of the
1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Jul. 1999, vol. 3, pp. 1958-
1962 Vol. 3.

[22] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in 1998 IEEE international conference
on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat.
No. 98TH8360), 1998, pp. 69–73.

[23] M. Clerc, “The swarm and the queen: towards a deterministic and adaptive particle swarm
optimization,” in Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406), Jul. 1999, vol. 3, pp. 1951-1957 Vol. 3.

[24] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm
optimization,” in Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No.
00TH8512), 2000, vol. 1, pp. 84–88.

[25] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in Evolutionary
Programming VII, Berlin, Heidelberg, 1998, pp. 591–600.

[26] V. Vapnik, The nature of statistical learning theory. Springer science & business media, 2013.
[27] V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp.

988–999, 1999.
[28] A. J. Smola and B. Scho lkopf, “A tutorial on support vector regression,” Stat. Comput., vol. 14, no. 3,

pp. 199–222, 2004.
[29] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Trans. Intell. Syst.

Technol. TIST, vol. 2, no. 3, pp. 1–27, 2011.
[30] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances and future challenges,”

Swarm Evol. Comput., vol. 1, no. 2, pp. 61–70, 2011.

