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Abstract 

In the recent decades, researches of metamodel-assisted optimization algorithms, also 
known as surrogate-assisted optimization algorithms, were rapidlly proposed for 
solving many kinds of expensive real-world problems, which are generally non-
differential, multi-modal and noisy. Therefore, evolutionary algorithms (EAs), which are 
gradient-free and black-box friendly, are likely to be the promising approaches. 
Nevertheless, there are still challenges that all these algorithms require a big number of 
evaluation calls before achieving solution close to the global optimum. As a result, a 
bunch of approximation-based algorithms were proposed with the propose of avoiding 
the costly evaluations. In this paper, we present a brief investigation of these 
approximation-based researches. And a metamodel-assisted dual swarm particle swarm 
optimization is proposed. Experimental results obtained on benchmark functions from 
Black-box optimization benchmarking (BBOB) are presented. 
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1. Introduction 

Typically, the goal of real-world engineering optimization problems is to carry out the optimum 
designs, parameters or characteristics under specified design criteria and time limit. Many of 
them,  such as manufacturing engineering [1], food industry [2], steel casting  [3] and drug 
design [4], require significant resources for evaluations which are normally black-boxing, 
experiment-based or simulation-based. Black-box problems are a group of problems with a 
least one unknown function that given a list of inputs, corresponding outputs can be obtained 
without knowing its internal structure or expression [5]. Moreover, optimization problems 
containing functions that discontinue, non-smooth, noisy or lack of gradient information are 
generally considered as black-boxing due to they cannot apply traditional gradient-based 
mathematical programming methods[6]. Evolutionary algorithms are widely used gradient-
free methods to solve black-box problems. Unfortunately, these kinds of algorithms require a 
big number of evaluation calls before achieving solution close to the global optimum, which is 
generally unaffordable if the problems are experiment-based or simulation-based as 
mentioned above. For instance, photobioreactor design [7], wind energy evaluation [8] and 
agricultural industry  design [9], which are computational fluid dynamics (CFDs) based, cost 
minutes or hours to run the expensive computationally analysis code for a single evaluation call. 
Hence, metamodel-assisted algorithms, also known as surrogate-assisted algorithms, were 
proposed, focusing to reduce computational time in evolutionary optimizations of real-world 
expensive problems by using approximation functions along with costly real functions.  

In recent years, various researches about metamodel-assisted algorithms were reported. [10] 
proposed a framework using artificial neural network (ANN) and covariance  matrix  
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adaptation evolution  strategy (CMA-ES). [11] employed radial basis function (RBF) based 
hybrid genetic algorithm (GA) for solving high-fidelity engineering design problems. [12] 
combined gaussian process regression (GPR) and differential evolution (DE) for medium scale 
expensive optimization problems. [13] applied fitness inheritance surrogate model to  real-
coded genetic algorithms. [14] introduced a method with kriging and particle swarm 
optimization. [15] introduced a two-layer surrogate-assisted particle swarm optimization 
algorithm. [16] presented a gaussian process regression and radial basis function hybrid 
assisted evolutionary algorithm. [17] introduced self-adaptive evolution strategies bases local 
support vector machine (SVM) constraint surrogate models.  

These researches proved that metamodel-assisted methods greatly increase the power of the 
optimizations. The same number of evaluations could be done to get closer to the global 
optimum or to solve more difficult optimization problems.[18] For all that there are 
encouraging efforts, metamodel-assisted algorithms have their own disadvantage, which is 
known as curse of uncertainty [19]. Researchers suggest that the approximation error of 
approximation models may lead algorithms converge to false optima. Still and all, the 
uncertainty does not always harm, due to its insensitivity to multimodal or noisy landscape of 
the complex problem. Hence, making use of the advantage and overcoming the disadvantage 
are constantly research direction of this topic. 

2. Particle Swarm Optimization  

Particle swarm optimization, which was firstly proposed in 1995 [20], is a swarm theory based 
optimization algorithm for solving continuous nonlinear problems, which can be define as 
follow: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝒙) (1) 

𝑠. 𝑡.  𝒙𝑙𝑏 ≤ 𝒙 ≤ 𝒙𝑢𝑏 (2) 

where 𝒙 is the decision variable vector, 𝑓(𝒙) is the objective function, 𝒙𝑙𝑏 and 𝒙𝑢𝑏 are the upper 
and lower boundary vectors of  𝒙. In this algorithm, a group of particles start randomly in the 
search space. Each of the particles has its own position and velocity and is guided by two bests: 
one is the particle best (pbest), which records the best position that one particle has found, the 
other is the global best (gbest), which record the best position that the whole swarm has found. 
Updating rules at iteration 𝑡 → 𝑡 + 1 can be defined as: 

𝒗𝑖
𝑡+1 = 𝒗𝑖

𝑡 + 𝑐1𝑟1(𝒑𝒃𝒆𝒔𝒕𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝒈𝒃𝒆𝒔𝒕𝑡 − 𝒙𝑖
𝑡) (3) 

𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝒗𝑖
𝑡+1 (4) 

where 𝒙𝑖
𝑡 is the position of particle 𝑖 at iteration 𝑡, 𝒗𝑖

𝑡  is the velocity of particle 𝑖 at iteration 𝑡,  
𝒑𝒃𝒆𝒔𝒕𝑖

𝑡 is the best historical position of particle 𝑖 before iteration 𝑡, 𝒈𝒃𝒆𝒔𝒕𝑡 is the best historical 
position of the whole swarm before iteration 𝑡,  𝑐1 and 𝑐2 are the acceleration coefficients, 𝑟1 
and 𝑟2 are random numbers in the range (0,1].  

Algorithm 1: The original particle swarm optimization  

Initialize particle position 𝒙 and velocity 𝒗 randomly within boundary 

For each particle i in the swarm 

    𝑷𝒃𝒆𝒔𝒕𝒊 = 𝒙𝒊 

End For 

While not stopping criterion is not met 

    For each particle i in the swarm 

        Evaluate particle i 

        If i is the new particle best 

            update 𝑷𝒃𝒆𝒔𝒕𝒊 = 𝒙𝒊  
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        End IF 

        If i is the new global best 

            update 𝑮𝒃𝒆𝒔𝒕 = 𝒙𝒊  

        End IF 

        Update velocity using (3) 

        Update position using (4) 

    End For 

End While 

In spite of simplicity and efficiency, the original PSO has its own flaws that the search sometimes 
traps into local optimum, and lack of convergence prove. Hence, several  variants of PSO have 
been proposed, such as PSO with neighborhood operator to improve its exploration ability[21], 
inertia weight and constriction factor based method to insure convergence[22] [23] [24]. The 
chosen algorithm in this paper is PSO with inertia weight, which particles updating criterion 
can be altered as:  

𝒗𝑖
𝑡+1 = 𝑤𝒕𝒗𝑖

𝑡 + 𝑐1𝑟1(𝒑𝒃𝒆𝒔𝒕𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝒈𝒃𝒆𝒔𝒕𝑡 − 𝒙𝑖
𝑡) (5) 

𝒙𝑖
𝑡+1 = 𝒙𝑖

𝑡 + 𝒗𝑖
𝑡+1 (6) 

where 𝑤𝑡  is inertia weight. Normally, the inertia weight changes linearly[25], reducing from 
𝑤𝑚𝑎𝑥 to 𝑤𝑚𝑖𝑛  over the search iterations: 

𝑤𝑡 = 𝑤𝑚𝑎𝑥 −
𝑡(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝑡𝑚𝑎𝑥

(7) 

where 𝑡𝑚𝑎𝑥 is the designed max iterations.  𝑤𝑚𝑖𝑛  and 𝑤𝑚𝑎𝑥 are usually set to 0.4 and 0.9. 

3. Support Vector Regression 

Support vector machine (SVM) is a kernel-based learning method for solving classification and 
regression [26].The regression form of SVM are proposed in 1998, which is called ɛ-SVR[27]. 
The goal is to find a function 𝑓(𝑥) that has at most ε deviation from the actually obtained targets 
𝑦𝑖  for all the training data, and at the same time is as flat as possible[28]. The standard form of 
support vector regression is[29]: 

𝑚𝑖𝑛
𝑤,𝑏,𝜉,𝜉∗

1

2
𝒘𝑇𝒘 + 𝐶 ∑ 𝜉𝑖

𝑙

𝑖=1

+ 𝐶 ∑ 𝜉𝑖
∗

𝑙

𝑖=1

 subject to 𝒘𝑇𝜙(𝒙𝑖) + 𝑏 − 𝑧𝑖 ≤ 𝜖 + 𝜉𝑖

𝑧𝑖 − 𝒘𝑇𝜙(𝒙𝑖) − 𝑏 ≤ 𝜖 + 𝜉𝑖
∗,

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1, … , 𝑙.

(8) 

The dual problem is 

𝑚𝑖𝑛
𝛼,𝛼∗

1

2
(𝜶 − 𝜶∗)𝑇𝑸(𝜶 − 𝜶∗) + 𝜖 ∑(𝛼𝑖 + 𝛼𝑖

∗)

𝑙

𝑖=1

+ ∑ 𝑧𝑖(𝛼𝑖 − 𝛼𝑖
∗)

𝑙

𝑖=1

 subject to 𝒆𝑇(𝜶 − 𝜶∗) = 0

0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶, 𝑖 = 1, … , 𝑙

(9) 

𝑸  is a matrix, 𝑸𝒊𝒋 = 𝐾(𝒙𝒊, 𝒙𝒋) =  𝜙(𝒙𝑖)𝑇  𝜙(𝒙𝑗) , and 𝐾(𝑥, 𝑥′)  is the kernel function, which is 

supposed to be given priority. The most commonly used kernel function is the Gaussian Kernel: 

𝐾(𝒙, 𝒙′) = 𝑒
−

‖𝑥−𝑥′‖
2

2𝜎2 (10) 

 After solving (9) the approximate function can be given: 
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𝑓(𝑥) = ∑(−𝑎𝑖 + 𝑎𝑖
∗)

𝑙

𝑖=1

𝐾(𝑥𝑖, 𝑥) + 𝑏 (11) 

𝑙 is the total sample number.  

4. Meta-model Assisted Dual Swarm Particle Swarm Optimization 
(MADSPSO) 

4.1. The Framework of MADSPSO 

 
Figure 1: 2D case: meta-models are insensitivity to tiny local optimum, but could lead search 

trapping into unexpected local optimum 

Even though meta-model assisted algorithm could strikingly decrease real functions evaluated 
of expensive problems, the way to retain exploration ability is constantly an open issue. The 
uncertainty produced by meta-models brings both positive and negative efforts [19]. For 
instance, for many noisy and multi-model problems, if several particles of PSOs are guided by 
meta-models, the particles may smooth the tiny local optimum out, boosting exploration in the 
early stage, due to the uncertainty is insensitivity to the tiny changes of the original functions. 
At the same time, the uncertainty of meta-models also creates false optimum, which could lead 
the search trapping into unexpected local optimum. The interested reader is referred to the 
relevant researches [11][19]. 

The proposed algorithm includes two swarms, one is the classic swarm, which is similar to the 
original PSO, evaluating the real function, the other is called the surrogate swarm, which is 
guided by the meta-model approximate function. Like other meta-model assisted algorithms, 
the proposed method is divided into two phases. In the first phase, normally called initialization 
phase, the classic swarm initializes as same as the original PSO algorithm with inertia weight 
set to 𝑤𝑚𝑎𝑥 , position 𝒙 and velocity 𝒗 randomly within boundary, and records the real-function 
evaluated (𝑥, 𝑓(𝑥)) before the global database 𝐷𝑔 meet the minimum requirement. In the main 

phase, along with the classic swarm, the surrogate swarm start to run bases the meta-model 
constructed using the local database 𝐷𝑙 ,which is a subset of the global database 𝐷𝑔 under some 

certain criteria. The initial position 𝒙  and velocity 𝒗  of the surrogate swarm are following 
distribution of the classic swarm. The dual swarms run parallelly and asynchronously. While 
the classic swarm iterates once, the surrogate swarm iterates multiple times, contributing its 
best swarms to the classic swarm. The validity of the meta-model can is verified by using the 
current classic swarm particles. Specifically, for various real-world application that priori 
knowledge or history data is available, the algorithm can start at second phase. 
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Figure 2:  Structure of the MADSPSO 

4.2. Database Management 

All the real functions evaluated are supposed to be recorded in the global database. The meta-
model constructed with global database is called global model. Though has the remarkable 
ability of exploring the decision space, the global model also has negative impacts. As the search 
proceeding, approximation accuracy of the global model could be an issue due to the data 
samples that the global model used distribute in a wide search space. Likewise, getting more 
data samples generally means more time to train meta-model, which could be geometrically 
expanding in many approximation strategies. Hence, a subset of the global database is selected 
in various researches. The meta-model using this more ‘local’ database is defined as local model. 
The proposed algorithm uses the following strategy: 

𝑥𝑚𝑖𝑛𝑑
𝑡 = min

𝑖∈𝐼
(𝑥𝑖𝑑

𝑡 ) (12) 

𝑥𝑚𝑎𝑥𝑑
𝑡 = max

𝑖∈𝐼
(𝑥𝑖𝑑

𝑡 ) (13) 

Where 𝐼 is the classic swarm set. The boundary of local database is determined by  𝑥𝑚𝑖𝑛𝑑
𝑡  and 

𝑥𝑚𝑎𝑥𝑑
𝑡  of last 𝑚 generations. 

𝑙𝑑𝑒𝑡𝑎𝑑
𝑡 = max

𝑡 ′=𝑡−𝑚+1,𝑡−𝑚+2,…,𝑡
(𝑥𝑚𝑎𝑥𝑑

𝑡′
) − min

𝑡 ′=𝑡−𝑚+1,𝑡−𝑚+2,…,𝑡
(𝑥𝑚𝑖𝑛𝑑

𝑡′
) (14) 

𝑙𝑚𝑖𝑛𝑑
𝑡 = min

𝑡 ′=𝑡−𝑚+1,𝑡−𝑚+2,…,𝑡
(𝑥𝑚𝑖𝑛𝑑

𝑡′
) − 𝛼(𝑙𝑑𝑒𝑡𝑎𝑑

𝑡 ) (15) 

𝑙𝑚𝑎𝑥𝑑
𝑡 = max

𝑡 ′=𝑡−𝑚+1,𝑡−𝑚+2,…,𝑡
𝑥𝑚𝑎𝑥𝑑

𝑡′
+ 𝛼(𝑙𝑑𝑒𝑡𝑎𝑑

𝑡 ) (16) 

Where 𝛼 is a constant that normally in the range [0,2]. Finally, the local database 𝐷𝑙  can be 
defined as: 

𝐷𝑙
𝑡 = {(𝑥, 𝑓(𝑥))|(𝑥, 𝑓(𝑥)) ∈ 𝐷𝑔

𝑡 , 𝑙𝑚𝑖𝑛𝑑
𝑡 < 𝑥𝑑 < 𝑙𝑚𝑎𝑥𝑑

𝑡 } (17) 

A larger 𝛼 and a larger 𝑚 mean more ‘global’ the local model is. Occasionally, 𝑎 could be relax 
until the samples of 𝐷𝑙

𝑡 reach minimum requirement 𝑛𝑙. 

𝑎𝑛𝑒𝑤 = 𝜏𝑎𝑜𝑙𝑑  
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𝜏 could be simply set to 1.1. 

4.3. Meta-model Management 

As the search progressing, the differences between particles distribution and train set 
distribution will be getting bigger. Approximation accuracy of the meta-model is supposed to 
be tested. Evaluating the mean square error (MSE) is the most commonly method. Nevertheless,  
as [30] suggested, for ranking-based algorithms like PSOs and EAs, sometimes, approximation 
model that has a large approximation error but are adequately good for evolutionary search. 
Because in these algorithms, evolutionary behaviors such as selection or gbest alternating, only 
compare the ranking of solutions. Therefore, in this paper, a ranking-based error function is 
proposed to evaluate accuracy of the current meta-model: 

𝑒𝑟𝑟 =
2

𝑁(𝑁 − 1)
∑ ∑ ((𝑓(𝑥𝑖) < 𝑓(𝑥𝑗)) 𝑥𝑜𝑟 (𝑓(𝑥𝑖) < 𝑓(𝑥𝑗)))

𝑖<𝑗<𝑁1<𝑖<𝑁

(18) 

𝑎 𝑥𝑜𝑟 𝑏 = {
0 𝑖𝑓 (𝑎 = 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑏 = 𝑡𝑟𝑢𝑒) 𝑜𝑟 (𝑎 = 𝑓𝑎𝑙𝑠𝑒 𝑎𝑛𝑑 𝑏 = 𝑓𝑎𝑙𝑠𝑒)

1 𝑖𝑓(𝑎 = 𝑡𝑟𝑢𝑒 𝑎𝑛𝑑 𝑏 = 𝑓𝑎𝑙𝑠𝑒) 𝑜𝑟 (𝑎 = 𝑓𝑎𝑙𝑠𝑒 𝑎𝑛𝑑 𝑏 = 𝑡𝑟𝑢𝑒)
(19) 

𝑥𝑖 and 𝑥𝑗 are different particles in the current classic swarm. 𝑥𝑜𝑟 is the exclusive-or operator. 

Obviously, 𝑒𝑟𝑟 = 0 means that the order of  𝑓(𝑥) and 𝑓(𝑥) are exactly the same on the test set, 

and the meta-model are most likely trustworthy. Instead, if 𝑒𝑟𝑟 = 1 means  𝑓(𝑥) and 𝑓(𝑥) are 
in reverse order on the test set. A hyper parameter 𝑒𝑟𝑟𝑠  is supposed to be determined in 
purpose of deciding whether the meta-model is still accurate enough, or a new meta-model of 
a more local dataset is ought to be built.  

Algorithm 2: Database and Meta-model Management  

Triggered when the classic swarm finished one . 

Record the (𝑥, 𝑓(𝑥)),that the classic swarm newly evaluated, to global database 
𝐷𝑔. 

Calculate 𝑒𝑟𝑟 using (18)(19). 

IF 𝑒𝑟𝑟 > 𝑒𝑟𝑟𝑠  

    Calculate 𝐷𝑙
𝑡 using (12)-(17). 

    WHILE 𝑐𝑟𝑎𝑑(𝐷𝑙
𝑡) < 𝑛𝑙 and 𝑐𝑟𝑎𝑑(𝐷𝑙

𝑡) ≠ 𝑐𝑟𝑎𝑑(𝐷𝑔
𝑡) 

        Update 𝑎𝑛𝑒𝑤 = 𝜏𝑎𝑜𝑙𝑑 . 

        Calculate 𝐷𝑙
𝑡 using (12)-(17). 

    END WHILE 

    Train new meta-model bases new 𝐷𝑙
𝑡. 

END IF 

5. Benchmark Results 

In this section, the Rosenbrock benchmark function is chosen to evaluate the proposed 
algorithm. The Rosenbrock benchmark function, also referred to as the Valley or Banana 
function, is one of the most popular test problems for both black-boxed or gradient-based 
optimization algorithms. The n dimensions Rosenbrock benchmark function can be described 
as: 

𝑓(𝑥) = ∑(100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2)

𝑑−1

𝑖=1

(20) 
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This function is unimodal, and the global minimum lies in a narrow, parabolic valley. However, 
even though this valley is easy to find, convergence to the minimum is difficult. The global 
minimum is 𝑓(𝑥∗) = 0 at 𝑥∗ = (1,1, … ,1). 

Table.1 and Figure.3 show the comparison between the original CPSO and the proposed 
algorithm (PA). Both results are the average of 20 times computations. 

Table 1: Results of the original CPSO and the proposed algorithm 

 Best Worst Average Std 

PSO(t=5000) 1.49e00 2.31e02 6.22e01 5.82e01 

PA (t=5000) 5.02e00 8.80e01 8.17e00 5.70e00 

PSO(t=10000) 8.66e-1 9.95e01 2.27e01 2.20e01 

PA (t=10000) 3.98e00 7.06e01 5.64e00 2.31e00 

 

 
Figure 3:  Average fitness comparison  

The meta-model starts to work as soon as the global database has collected 2000 samples at 
least. However, it seems that the meta-model assisting does little influence before about 3500 
real function evaluations. The reason is that at early stage of the algorithm, the particles spread 
in vast range of the decision space. It is difficult to collect enough samples to build accurate 
meta-model. The best particles that  meta-model reporting, are with bigger bias than latter 
stage. In the proposed algorithm, those particles would be abandoned, and do no negative 
impact of the search process. With the algorithm progressing, the efficient local model could be 
built and continuously contribute solution to the main swarm. Those solutions could be used 
for replacing the particles in the main swarm and the search could be accelerated. Also, it is 
believed that the exploration ability is improved. The reason is every time when the meta-
model reconstructs, a new surrogate swarm must be built basing the distribution of the main 
swarm particles. This process achieves the same effect as many PSO variants with restart 
strategy, which were proved to be effective methods to improve the exploration ability of 
algorithm. 
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6. Conclusion 

The MADSPSO is proposed to solve real-world expensive optimization problems. The key 
feature is building a meta-model-based swarm, which continuously try to contribute good 
solutions to the main PSO swarm. This swarm runs separately and update itself using the 
computing results of the main PSO swarm, ensuring that the extra model does almost no 
negative impact to the searching progress. A ranking function is used to evaluate the quality of 
meta-model, that could avoid the negative impact of system bias, since for the separately 
running meta-model swarm the tendency of the fitness is more important than the exact 
function value. Experimental result shows the proposed algorithm could effectively accelerate 
the search speed and improve the exploration ability. 

However, these are much work to do in the future research. The preparing stage is too long 
comparing the other model-based algorithm. The main swarm will not accept meta-model-
based results unless they are good enough. Effective strategy is needed to do in the future work. 
Also, the resampling method of the surrogate swarm could be improved, many restart strategy 
based algorithms could be referred. 
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